Experimental and theoretical investigation of oil and gas trapping under two- And three-phase flow including water alternating gas (WAG) injection

S. Mobeen Fatemi, Mehran Sohrabi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Relative permeability, hysteresis effects, and trapped phase saturations are key parameters for reliable simulation of processes involved in oil recovery including WAG injection. Although hydrocarbon gas and CO2, which are widely used in WAG schemes, are likely to be injected at very low IFT (near-miscible) conditions into reservoir rocks with mixed wettability, current models are based on high IFT two-phase flow conditions and water-wet systems. In this paper, we investigate the characteristic properties of rock/fluids systems (wettability, immobile water saturation, permeability, saturation history and oil/gas IFT) that influence the entrapment of gas and oil in petroleum reservoirs. We report a series of core flood experiments which were performed in water-wet and mixed-wet rocks in order to measure the trapped oil and gas saturation as a function of their initial saturations. The experiments include both two-phase (oil/water, oil/gas and water/gas systems) and three-phase flow (WAG injection). Fluids saturations were calculated using material balance as well as x-ray scans of the cores. In both water-wet and mixed-wet cores, trapped gas saturation obtained for two-phase water-gas systems (Sgtw) are higher than those obtained for two-phase gas-oil systems (Sgto) under low gas-oil IFT. The differences of measured trapped gas saturations during three-phase and two-phase water/gas systems, especially for small Sgi values, were not significant. Both three-phase trapped gas and trapped oil saturations were larger in water-wet systems compared to what was obtained in mixed-wet systems. Measured three-phase trapped oil and gas saturations for lower permeability rock (65mD) were larger than those of the 1000 mD core sample. We also investigated the effect of trapped gas saturation (S gt) on the amount of residual oil saturation at the end of water injection periods of WAG (Sorw). It is found that the Sorw increases linearly by decreasing the Sgt, and approaches to the two-phase Sorw (after primary waterflooding) at its limit where Sgt = 0. Sorw vs. Sgt curve of the water-wet system lies above that of the mixed-wet system. This means that the amount of oil that is trapped by water in the presence of gas increases as the porous medium becomes more water-wet. From the different parameters studied here, injection scenario, permeability and oil/gas IFT have the largest effect on the slope of the Sorw vs. Sgt curve. For both water-wet and mixed-wet systems it was found that total trapped hydrocarbon saturations (for different water injections of WAG injection) remained close to the residual oil saturation at the end of primary waterflooding. The above experimental results are discussed and explained based on our understanding of pore-scale and core-scale displacement mechanisms of multiphase flow and cyclic injections (especially WAG injection) in porous media. Using our experimental results, we demonstrate that although some previously developed empirical trap models are able to capture the trends of trapped gas and trapped oil saturations for two-phase systems, but the observed trends in three-phase (especially for mixed-wet system) cannot be captured using available models. This further emphasises the need for developing more reliable models for fluid displacements in three-phase flow

Original languageEnglish
Title of host publicationProceedings - SPE Annual Technical Conference and Exhibition
Subtitle of host publication(ATCE 2013)
Place of PublicationRichardson, Texas
PublisherSociety of Petroleum Engineers
Pages1438-1464
Number of pages27
Volume2
ISBN (Electronic)9781613992401
ISBN (Print)9781629931876
DOIs
Publication statusPublished - 2013
EventSPE Annual Technical Conference and Exhibition 2013 - New Orleans, LA, United States
Duration: 30 Sep 20132 Oct 2013

Conference

ConferenceSPE Annual Technical Conference and Exhibition 2013
Abbreviated titleATCE 2013
CountryUnited States
CityNew Orleans, LA
Period30/09/132/10/13

Fingerprint

three phase flow
trapping
oil
gas
saturation
water
permeability
wettability
fluid
porous medium

Cite this

Fatemi, S. M., & Sohrabi, M. (2013). Experimental and theoretical investigation of oil and gas trapping under two- And three-phase flow including water alternating gas (WAG) injection. In Proceedings - SPE Annual Technical Conference and Exhibition: (ATCE 2013) (Vol. 2, pp. 1438-1464). Richardson, Texas: Society of Petroleum Engineers . https://doi.org/10.2118/166193-MS
Fatemi, S. Mobeen ; Sohrabi, Mehran. / Experimental and theoretical investigation of oil and gas trapping under two- And three-phase flow including water alternating gas (WAG) injection. Proceedings - SPE Annual Technical Conference and Exhibition: (ATCE 2013). Vol. 2 Richardson, Texas : Society of Petroleum Engineers , 2013. pp. 1438-1464
@inproceedings{432e9c0055894be99032130ad86273e2,
title = "Experimental and theoretical investigation of oil and gas trapping under two- And three-phase flow including water alternating gas (WAG) injection",
abstract = "Relative permeability, hysteresis effects, and trapped phase saturations are key parameters for reliable simulation of processes involved in oil recovery including WAG injection. Although hydrocarbon gas and CO2, which are widely used in WAG schemes, are likely to be injected at very low IFT (near-miscible) conditions into reservoir rocks with mixed wettability, current models are based on high IFT two-phase flow conditions and water-wet systems. In this paper, we investigate the characteristic properties of rock/fluids systems (wettability, immobile water saturation, permeability, saturation history and oil/gas IFT) that influence the entrapment of gas and oil in petroleum reservoirs. We report a series of core flood experiments which were performed in water-wet and mixed-wet rocks in order to measure the trapped oil and gas saturation as a function of their initial saturations. The experiments include both two-phase (oil/water, oil/gas and water/gas systems) and three-phase flow (WAG injection). Fluids saturations were calculated using material balance as well as x-ray scans of the cores. In both water-wet and mixed-wet cores, trapped gas saturation obtained for two-phase water-gas systems (Sgtw) are higher than those obtained for two-phase gas-oil systems (Sgto) under low gas-oil IFT. The differences of measured trapped gas saturations during three-phase and two-phase water/gas systems, especially for small Sgi values, were not significant. Both three-phase trapped gas and trapped oil saturations were larger in water-wet systems compared to what was obtained in mixed-wet systems. Measured three-phase trapped oil and gas saturations for lower permeability rock (65mD) were larger than those of the 1000 mD core sample. We also investigated the effect of trapped gas saturation (S gt) on the amount of residual oil saturation at the end of water injection periods of WAG (Sorw). It is found that the Sorw increases linearly by decreasing the Sgt, and approaches to the two-phase Sorw (after primary waterflooding) at its limit where Sgt = 0. Sorw vs. Sgt curve of the water-wet system lies above that of the mixed-wet system. This means that the amount of oil that is trapped by water in the presence of gas increases as the porous medium becomes more water-wet. From the different parameters studied here, injection scenario, permeability and oil/gas IFT have the largest effect on the slope of the Sorw vs. Sgt curve. For both water-wet and mixed-wet systems it was found that total trapped hydrocarbon saturations (for different water injections of WAG injection) remained close to the residual oil saturation at the end of primary waterflooding. The above experimental results are discussed and explained based on our understanding of pore-scale and core-scale displacement mechanisms of multiphase flow and cyclic injections (especially WAG injection) in porous media. Using our experimental results, we demonstrate that although some previously developed empirical trap models are able to capture the trends of trapped gas and trapped oil saturations for two-phase systems, but the observed trends in three-phase (especially for mixed-wet system) cannot be captured using available models. This further emphasises the need for developing more reliable models for fluid displacements in three-phase flow",
author = "Fatemi, {S. Mobeen} and Mehran Sohrabi",
year = "2013",
doi = "10.2118/166193-MS",
language = "English",
isbn = "9781629931876",
volume = "2",
pages = "1438--1464",
booktitle = "Proceedings - SPE Annual Technical Conference and Exhibition",
publisher = "Society of Petroleum Engineers",
address = "United States",

}

Fatemi, SM & Sohrabi, M 2013, Experimental and theoretical investigation of oil and gas trapping under two- And three-phase flow including water alternating gas (WAG) injection. in Proceedings - SPE Annual Technical Conference and Exhibition: (ATCE 2013). vol. 2, Society of Petroleum Engineers , Richardson, Texas, pp. 1438-1464, SPE Annual Technical Conference and Exhibition 2013, New Orleans, LA, United States, 30/09/13. https://doi.org/10.2118/166193-MS

Experimental and theoretical investigation of oil and gas trapping under two- And three-phase flow including water alternating gas (WAG) injection. / Fatemi, S. Mobeen; Sohrabi, Mehran.

Proceedings - SPE Annual Technical Conference and Exhibition: (ATCE 2013). Vol. 2 Richardson, Texas : Society of Petroleum Engineers , 2013. p. 1438-1464.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Experimental and theoretical investigation of oil and gas trapping under two- And three-phase flow including water alternating gas (WAG) injection

AU - Fatemi, S. Mobeen

AU - Sohrabi, Mehran

PY - 2013

Y1 - 2013

N2 - Relative permeability, hysteresis effects, and trapped phase saturations are key parameters for reliable simulation of processes involved in oil recovery including WAG injection. Although hydrocarbon gas and CO2, which are widely used in WAG schemes, are likely to be injected at very low IFT (near-miscible) conditions into reservoir rocks with mixed wettability, current models are based on high IFT two-phase flow conditions and water-wet systems. In this paper, we investigate the characteristic properties of rock/fluids systems (wettability, immobile water saturation, permeability, saturation history and oil/gas IFT) that influence the entrapment of gas and oil in petroleum reservoirs. We report a series of core flood experiments which were performed in water-wet and mixed-wet rocks in order to measure the trapped oil and gas saturation as a function of their initial saturations. The experiments include both two-phase (oil/water, oil/gas and water/gas systems) and three-phase flow (WAG injection). Fluids saturations were calculated using material balance as well as x-ray scans of the cores. In both water-wet and mixed-wet cores, trapped gas saturation obtained for two-phase water-gas systems (Sgtw) are higher than those obtained for two-phase gas-oil systems (Sgto) under low gas-oil IFT. The differences of measured trapped gas saturations during three-phase and two-phase water/gas systems, especially for small Sgi values, were not significant. Both three-phase trapped gas and trapped oil saturations were larger in water-wet systems compared to what was obtained in mixed-wet systems. Measured three-phase trapped oil and gas saturations for lower permeability rock (65mD) were larger than those of the 1000 mD core sample. We also investigated the effect of trapped gas saturation (S gt) on the amount of residual oil saturation at the end of water injection periods of WAG (Sorw). It is found that the Sorw increases linearly by decreasing the Sgt, and approaches to the two-phase Sorw (after primary waterflooding) at its limit where Sgt = 0. Sorw vs. Sgt curve of the water-wet system lies above that of the mixed-wet system. This means that the amount of oil that is trapped by water in the presence of gas increases as the porous medium becomes more water-wet. From the different parameters studied here, injection scenario, permeability and oil/gas IFT have the largest effect on the slope of the Sorw vs. Sgt curve. For both water-wet and mixed-wet systems it was found that total trapped hydrocarbon saturations (for different water injections of WAG injection) remained close to the residual oil saturation at the end of primary waterflooding. The above experimental results are discussed and explained based on our understanding of pore-scale and core-scale displacement mechanisms of multiphase flow and cyclic injections (especially WAG injection) in porous media. Using our experimental results, we demonstrate that although some previously developed empirical trap models are able to capture the trends of trapped gas and trapped oil saturations for two-phase systems, but the observed trends in three-phase (especially for mixed-wet system) cannot be captured using available models. This further emphasises the need for developing more reliable models for fluid displacements in three-phase flow

AB - Relative permeability, hysteresis effects, and trapped phase saturations are key parameters for reliable simulation of processes involved in oil recovery including WAG injection. Although hydrocarbon gas and CO2, which are widely used in WAG schemes, are likely to be injected at very low IFT (near-miscible) conditions into reservoir rocks with mixed wettability, current models are based on high IFT two-phase flow conditions and water-wet systems. In this paper, we investigate the characteristic properties of rock/fluids systems (wettability, immobile water saturation, permeability, saturation history and oil/gas IFT) that influence the entrapment of gas and oil in petroleum reservoirs. We report a series of core flood experiments which were performed in water-wet and mixed-wet rocks in order to measure the trapped oil and gas saturation as a function of their initial saturations. The experiments include both two-phase (oil/water, oil/gas and water/gas systems) and three-phase flow (WAG injection). Fluids saturations were calculated using material balance as well as x-ray scans of the cores. In both water-wet and mixed-wet cores, trapped gas saturation obtained for two-phase water-gas systems (Sgtw) are higher than those obtained for two-phase gas-oil systems (Sgto) under low gas-oil IFT. The differences of measured trapped gas saturations during three-phase and two-phase water/gas systems, especially for small Sgi values, were not significant. Both three-phase trapped gas and trapped oil saturations were larger in water-wet systems compared to what was obtained in mixed-wet systems. Measured three-phase trapped oil and gas saturations for lower permeability rock (65mD) were larger than those of the 1000 mD core sample. We also investigated the effect of trapped gas saturation (S gt) on the amount of residual oil saturation at the end of water injection periods of WAG (Sorw). It is found that the Sorw increases linearly by decreasing the Sgt, and approaches to the two-phase Sorw (after primary waterflooding) at its limit where Sgt = 0. Sorw vs. Sgt curve of the water-wet system lies above that of the mixed-wet system. This means that the amount of oil that is trapped by water in the presence of gas increases as the porous medium becomes more water-wet. From the different parameters studied here, injection scenario, permeability and oil/gas IFT have the largest effect on the slope of the Sorw vs. Sgt curve. For both water-wet and mixed-wet systems it was found that total trapped hydrocarbon saturations (for different water injections of WAG injection) remained close to the residual oil saturation at the end of primary waterflooding. The above experimental results are discussed and explained based on our understanding of pore-scale and core-scale displacement mechanisms of multiphase flow and cyclic injections (especially WAG injection) in porous media. Using our experimental results, we demonstrate that although some previously developed empirical trap models are able to capture the trends of trapped gas and trapped oil saturations for two-phase systems, but the observed trends in three-phase (especially for mixed-wet system) cannot be captured using available models. This further emphasises the need for developing more reliable models for fluid displacements in three-phase flow

U2 - 10.2118/166193-MS

DO - 10.2118/166193-MS

M3 - Conference contribution

SN - 9781629931876

VL - 2

SP - 1438

EP - 1464

BT - Proceedings - SPE Annual Technical Conference and Exhibition

PB - Society of Petroleum Engineers

CY - Richardson, Texas

ER -

Fatemi SM, Sohrabi M. Experimental and theoretical investigation of oil and gas trapping under two- And three-phase flow including water alternating gas (WAG) injection. In Proceedings - SPE Annual Technical Conference and Exhibition: (ATCE 2013). Vol. 2. Richardson, Texas: Society of Petroleum Engineers . 2013. p. 1438-1464 https://doi.org/10.2118/166193-MS