TY - CHAP
T1 - Experimental and numerical investigations of “fabrication of TiO2 compact layer by the spray pyrolysis deposition system for dye-sensitized solar cells”
AU - Damira, Pernebayeva
AU - Hari, Upadhyaya
AU - Bobbili, Prabhakara
PY - 2018
Y1 - 2018
N2 - Current research focuses on the fabrication of the dye-sensitized solar cells (DSCs) based on titanium dioxide (TiO2) compact layer deposited by the spray pyrolysis deposition (SPD) technique. TiO2 compact layers have been grown on fluorine-doped tin oxide (FTO) glass substrates by the experimental aerosol-assisted SPD setup. This setup is designed and constructed for the research under the following conditions: substrate temperature of 300 °C, 400 °C, and 500 °C; initial solution concentration of Ti (IV) isopropoxide and ethanol of 0.5 ml and 100 ml, respectively; carrier gas pressure of 0.1 bar; nozzle-to-substrate distance of 20–30 cm; and spraying time of 5–10 s. The characterization instruments such as HITACHI (S-2700) scanning electron microscopy (SEM), BRUKER (D500) X-ray diffractometer (XRD), and JENWAY 7310 UV-Vis spectrophotometer have been used to investigate the film properties. Dye-sensitized solar cells (DSCs) were assembled based on a bare FTO glass, FTO coated with TiO2 compact layer and with conventional TiCl4-treated film. The current density (JSC) and overall energy conversion efficiency of the device have been improved from 11.31 to 12.8 mA/cm2 and from 3.8% to 6.4%, respectively. However, the dye-sensitized solar cell based on TiCl4-treated film presented the best results with efficiency of 7.35% and current density of 13.08 mA/cm2.
AB - Current research focuses on the fabrication of the dye-sensitized solar cells (DSCs) based on titanium dioxide (TiO2) compact layer deposited by the spray pyrolysis deposition (SPD) technique. TiO2 compact layers have been grown on fluorine-doped tin oxide (FTO) glass substrates by the experimental aerosol-assisted SPD setup. This setup is designed and constructed for the research under the following conditions: substrate temperature of 300 °C, 400 °C, and 500 °C; initial solution concentration of Ti (IV) isopropoxide and ethanol of 0.5 ml and 100 ml, respectively; carrier gas pressure of 0.1 bar; nozzle-to-substrate distance of 20–30 cm; and spraying time of 5–10 s. The characterization instruments such as HITACHI (S-2700) scanning electron microscopy (SEM), BRUKER (D500) X-ray diffractometer (XRD), and JENWAY 7310 UV-Vis spectrophotometer have been used to investigate the film properties. Dye-sensitized solar cells (DSCs) were assembled based on a bare FTO glass, FTO coated with TiO2 compact layer and with conventional TiCl4-treated film. The current density (JSC) and overall energy conversion efficiency of the device have been improved from 11.31 to 12.8 mA/cm2 and from 3.8% to 6.4%, respectively. However, the dye-sensitized solar cell based on TiCl4-treated film presented the best results with efficiency of 7.35% and current density of 13.08 mA/cm2.
KW - Dye-sensitized solar cells
KW - Spray pyrolysis deposition technique
KW - TiO compact layer
UR - http://www.scopus.com/inward/record.url?scp=85052406801&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-62575-1_22
DO - 10.1007/978-3-319-62575-1_22
M3 - Chapter
AN - SCOPUS:85052406801
SN - 9783319625744
T3 - Green Energy and Technology
SP - 315
EP - 331
BT - Exergy for A Better Environment and Improved Sustainability 2
A2 - Aloui, Fethi
A2 - Dincer, Ibrahim
PB - Springer
ER -