Experimental and Computational Studies on the Acetate-Assisted C-H Activation of N-Aryl Imidazolium Salts at Rhodium and Iridium: A Chloride Additive Changes the Selectivity of C-H Activation

Neringa Tamosiunaite, Lauren C. Logie, Samuel E. Neale, Kuldip Singh, David L. Davies, Stuart A. Macgregor

Research output: Contribution to journalArticlepeer-review

Abstract

Combined experimental and computational mechanistic studies of the reactions of unsymmetrical, para-substituted N-aryl imidazolium salts, L2-R1,R2, at [MCl2Cp*]2 (M = Rh, Ir) in the presence of NaOAc are reported. These proceed via intermediate N-heterocyclic carbene complexes that then allow an internal competition between two differently substituted aryl rings toward C-H activation to be monitored. At 348 K in dichloroethane C-H activation of the aryl with the more electron-withdrawing substituents is generally favored. DFT calculations show similar barriers for proton transfer and dissociative HOAc/Cl- ligand substitution, with proton transfer favoring electron-donating substituents, and ligand substitution favoring electron-withdrawing substituents. Microkinetic simulations reproduce the experimental preference implying that the ligand substitution step dominates selectivity. For several substrates, notably L2-F,OMe and L2-F,H, running the C-H activation reactions at 298 K in the presence of added [Et4N]Cl reverses the selectivity. The greater availability of chloride in solution makes an alternative dissociative interchange ligand substitution mechanism accessible, leaving proton transfer as selectivity determining and so favoring electron-donating substituents. Our results highlight the potential importance of the ligand substitution step in the interpretation of substituent effects and demonstrate how a simple additive, [Et4N]Cl, can have a dramatic effect on selectivity by changing the mechanism of ligand substitution.

Original languageEnglish
JournalJournal of Organic Chemistry
Early online date30 Dec 2021
DOIs
Publication statusE-pub ahead of print - 30 Dec 2021

ASJC Scopus subject areas

  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Experimental and Computational Studies on the Acetate-Assisted C-H Activation of N-Aryl Imidazolium Salts at Rhodium and Iridium: A Chloride Additive Changes the Selectivity of C-H Activation'. Together they form a unique fingerprint.

Cite this