Existence theory for stochastic power law fluids

Dominic Breit*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)


We consider the equations of motion for an incompressible non-Newtonian fluid in a bounded Lipschitz domain $${G {\subset} \mathbb{R}^{d}}$$G⊂Rd during the time interval (0, T) together with a stochastic perturbation driven by a Brownian motion W. The balance of momentum reads as$${\rm {d}\mathbf{v}} = {\rm div}\mathbf{S} {\rm d}t-(\nabla \mathbf{v})\mathbf{v} {\rm d}t + \nabla\pi {\rm d}t + \mathbf{f}{\rm d}t + \Phi(\mathbf{v}) {\rm d}\mathbf{W}_{t},$$dv=divSdt-(∇v)vdt+∇πdt+fdt+Φ(v)dWt,where v is the velocity, $${\pi}$$π the pressure and f an external volume force. We assume the common power law model $${\mathbf{S}(\varepsilon(\mathbf{v}))=(1+|\varepsilon(\mathbf{v})|)^{p-2}\varepsilon(\mathbf{v})}$$S(ε(v))=(1+|ε(v)|)p-2ε(v) and show the existence of martingale weak solution provided $${p > \frac{2d+2}{d+2}}$$p>2d+2d+2. Our approach is based on the $${L^{\infty}}$$L∞-truncation and a harmonic pressure decomposition which are adapted to the stochastic setting.

Original languageEnglish
Pages (from-to)295-326
Number of pages32
JournalJournal of Mathematical Fluid Mechanics
Issue number2
Publication statusPublished - Jun 2015


  • 35D30
  • 35K55
  • 35R60
  • 60H15
  • 76D03

ASJC Scopus subject areas

  • Applied Mathematics
  • Mathematical Physics
  • Computational Mathematics
  • Condensed Matter Physics


Dive into the research topics of 'Existence theory for stochastic power law fluids'. Together they form a unique fingerprint.

Cite this