Evidence for dynamic and multiple roles for huntingtin in Ciona intestinalis

Mohammed M Idris, Michael C Thorndyke, Euan R. Brown

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
88 Downloads (Pure)


Although mutations in the huntingtin gene (HTT) due to poly-Q expansion cause neuropathology in humans (Huntington’s disease; HD), the normal function(s) of the gene and its protein (HTT) remain obscure. With new information from recently sequenced invertebrate genomes, the study of new animal models opens the possibility of a better understanding of HTT function and its evolution. To these ends, we studied huntingtin expression pattern and dynamics in the invertebrate chordate Ciona intestinalis. Ciona huntingtin (Ci-HTT) shows a biphasic expression pattern during larval development and prior to metamorphosis. A single form of huntingtin protein is present until the early larval stages, at which time two different mass proteins become evident in the metamorphically competent larva. An antibody against Ci-HTT labeled 50 cells in the trunk mesenchyme regions in pre-hatching and hatched larvae and probably represents the distribution of the light form of the protein. Dual labeling with anti-Ci-HTT and anti-aldoketoreductase confirmed the presence of Ci-HTT in mesenchyme cells. Suppression of Ci-HTT RNA by a morpholino oligonucleotide reduced the number and apparent mobility of Ci-HTT positive cells. In Ciona, HTT expression has a dynamic temporal and spatial expression pattern that in ontogeny precedes metamorphosis. Although our results may reflect a derived function for the protein in pre- and post-metamorphic events in Ciona, we also note that as in vertebrates, there is evidence for multiple differential temporal expression, indicating that this protein probably has multiple roles in ontogeny and cell migration.

Original languageEnglish
Pages (from-to)151-165
Number of pages15
JournalInvertebrate Neuroscience
Issue number2
Early online date25 Jun 2013
Publication statusPublished - 2013


  • Animals
  • Cell Movement
  • Ciona intestinalis
  • Gene Expression Regulation, Developmental
  • Metamorphosis, Biological
  • Microtubule-Associated Proteins


Dive into the research topics of 'Evidence for dynamic and multiple roles for huntingtin in Ciona intestinalis'. Together they form a unique fingerprint.

Cite this