Erosion and deposition beneath the Subantarctic Front since the Early Oligocene

Uisdean Nicholson*, Dorrik Stow

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)
93 Downloads (Pure)

Abstract

The Antarctic Circumpolar Current (ACC) spills across the Falkland Plateau into the South Atlantic as a series of high-velocity jets. These currents are a driving force for global overturning circulation, and affect climate by modulating CO2 exchange between the atmosphere and ocean, but their timing of onset remains controversial. We present new evidence of strong currents associated with the Subantarctic Front (SAF) jet since the earliest Oligocene (~34 Ma) based on a widespread erosional surface on the Falkland Plateau, preserved below a 30,000 km2 contourite sand deposit. This is the largest such feature ever to be recognized, and provides the most robust constraint of the initiation of the SAF to date. By contrast, the South Falkland Slope Drift is dominated by contourite mud of Pleistocene-Recent age, substantially younger than previous estimates, indicating a significant decrease in long-term current strength at that time. As ACC strength is primarily a function of the position of the South-Westerly Winds, our data indicates that associated currents are likely to increase substantially in a warming world. Likely implications include increased upwelling and associated carbon flux from the deep ocean to the atmosphere, a positive feedback loop not included in most future projections of atmospheric CO2.

Original languageEnglish
Article number9296
JournalScientific Reports
Volume9
DOIs
Publication statusPublished - 26 Jun 2019

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Erosion and deposition beneath the Subantarctic Front since the Early Oligocene'. Together they form a unique fingerprint.

Cite this