Energy storage in cellulase linker peptides?

Clare McCabe, Xiongce Zhao, William S. Adney, Michael E. Himmel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

In this chapter, we discuss the use of molecular dynamics simulations and free-energy calculations to investigate the possible role the linker polypeptide, common to many cellulase enzymes, plays in the enzymatic hydrolysis of cellulose. In particular, we focus on the linker polypeptide from cellobiohydrolase I (CBH I) from Trichoderma reesei, which is one of the most active cellulase enzymes. CBH I is a multi-domain enzyme, consisting of a large catalytic domain containing an active site tunnel and a small cellulose binding module, which are joined together by a 27-amino-acid residue linker peptide. CBH I is believed to hydrolyze cellulose in a "processive" manner; however, the exact mechanism of the depolymerization of cellulose by CBH I is not fully understood. It has been hypothesized that the flexible interdomain linker mediates a caterpillar-like motion that enables the enzyme to move along the cellodextrin strand. Although the linker polypeptide sequence is known, the spatial conformation adopted y the linker domain and its role in the hydrolysis process, if any, has yet to be determined. The simulation results obtained to date indicate that the CBH I linker's free energy is critically dependent on the existence of the cellulose substrate and the stretching/compression pathway adopted. In the presence of a cellulose surface, simulations suggest that the linker exhibits two stable states, which would support the hypothesis that the linker peptide has the capacity to store energy in a manner similar to a spring and facilitate a caterpillar-like motion.

Original languageEnglish
Title of host publicationComputational Modeling in Lignocellulosic Biofuel Production
PublisherAmerican Chemical Society
Pages119-134
Number of pages16
ISBN (Electronic)9780841225725
ISBN (Print)9780841225718
DOIs
Publication statusPublished - 1 Jan 2010

Publication series

NameACS Symposium Series
Volume1052
ISSN (Print)0097-6156
ISSN (Electronic)1947-5918

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Energy storage in cellulase linker peptides?'. Together they form a unique fingerprint.

Cite this