Abstract
We prove that the universal cover of any graph manifold quasiisometrically embeds into a product of three trees. In particular, we show that the Assouad-Nagata dimension of the universal cover of any closed graph manifold is 3, proving a conjecture of Smirnov.
Original language | English |
---|---|
Pages (from-to) | 3337-3340 |
Number of pages | 4 |
Journal | Proceedings of the American Mathematical Society |
Volume | 141 |
Issue number | 10 |
Early online date | 14 Jun 2013 |
DOIs | |
Publication status | Published - 1 Aug 2013 |
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics