Abstract
We show that a relatively hyperbolic group quasi-isometrically embeds in a product of finitely many trees if the peripheral subgroups do, and we provide an estimate on the minimal number of trees needed. Applying our result to the case of 3-manifolds, we show that fundamental groups of closed 3-manifolds have linearly controlled asymptotic dimension at most 8. To complement this result, we observe that fundamental groups of Haken 3-manifolds with non-empty boundary have asymptotic dimension 2.
Original language | English |
---|---|
Pages (from-to) | 2261-2282 |
Number of pages | 22 |
Journal | Algebraic and Geometric Topology |
Volume | 13 |
Issue number | 4 |
DOIs | |
Publication status | Published - 19 Jun 2013 |
ASJC Scopus subject areas
- Geometry and Topology