Effect of intake air temperature and premixed ratio on combustion and exhaust emissions in a partial HCCI-DI diesel engine

Yew Heng Teoh*, Hishammudin Afifi Huspi, Heoy Geok How, Farooq Sher, Zia Ud Din, Thanh Danh Le, Huu Tho Nguyen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
9 Downloads (Pure)

Abstract

Homogeneous charge compression ignition (HCCI) is considered an advanced combustion method for internal combustion engines that offers simultaneous reductions in oxides of nitrogen (NOx) emissions and increased fuel efficiency. The present study examines the influence of intake air temperature (IAT) and premixed diesel fuel on fuel self-ignition characteristics in a light-duty compression ignition engine. Partial HCCI was achieved by port injection of the diesel fuel through air-assisted injection while sustaining direct diesel fuel injection into the cylinder for initiating combustion. The self-ignition of diesel fuel under such a set-up was studied with variations in premixed ratios (0–0.60) and inlet temperatures (40–100C) under a constant 1600 rpm engine speed with 20 Nm load. Variations in performance, emissions and combustion characteristics with premixed fuel and inlet air heating were analysed in comparison with those recorded without. Heat release rate profiles determined from recorded in-cylinder pressure depicted evident multiple-stage ignitions (up to three-stage ignition in several cases) in this study. Compared with the premixed ratio, the inlet air temperature had a greater effect on low-temperature reaction and HCCI combustion timing. Nonetheless, an increase in the premixed ratio was found to be influential in reducing nitric oxides emissions.

Original languageEnglish
Article number8593
JournalSustainability
Volume13
Issue number15
DOIs
Publication statusPublished - 1 Aug 2021

Keywords

  • Emissions and combustion
  • HCCI
  • Low-temperature reaction
  • Renewable fuels
  • Self-ignition
  • Sustainable environment

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Effect of intake air temperature and premixed ratio on combustion and exhaust emissions in a partial HCCI-DI diesel engine'. Together they form a unique fingerprint.

Cite this