Abstract
Biofluid behaviour in microchannel systems is investigated in this paper through the modelling of a microfluidic biochip developed for the separation of blood plasma. Based on particular assumptions, the effects of some mechanical features of the microchannels on behaviour of the biofluid are explored. These include microchannel, constriction, bending channel, bifurcation as well as channel length ratio between the main and side channels. The key characteristics and effects of the microfluidic dynamics are discussed in terms of separation efficiency of the red blood cells with respect to the rest of the medium. The effects include the Fahraeus and Fahraeus-Lindqvist effects, the Zweifach-Fung bifurcation law, the cell-free layer phenomenon. The characteristics of the microfluid dynamics include the properties of the laminar flow as well as particle lateral or spinning trajectories. In this paper the fluid is modelled as a single-phase flow assuming either Newtonian or Non-Newtonian behaviours to investigate the effect of the viscosity on flow and separation efficiency. It is found that, for a flow rate controlled Newtonian flow system, viscosity and outlet pressure have little effect on velocity distribution. When the fluid is assumed to be Non-Newtonian more fluid is separated than observed in the Newtonian case, leading to reduction of the flow rate ratio between the main and side channels as well as the system pressure as a whole. ©2009 IEEE.
Original language | English |
---|---|
Title of host publication | 2009 International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2009 |
Pages | 179-186 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 2009 |
Event | 2009 International Conference on Electronic Packaging Technology and High Density Packaging - Beijing, China Duration: 10 Aug 2009 → 13 Aug 2009 |
Conference
Conference | 2009 International Conference on Electronic Packaging Technology and High Density Packaging |
---|---|
Abbreviated title | ICEPT-HDP 2009 |
Country/Territory | China |
City | Beijing |
Period | 10/08/09 → 13/08/09 |