Abstract
Recent advancements in materials science and bioinspired designs have led to the development of wearable strain sensors with high sensitivity and stretchability. However, the majority of strain sensors are simultaneously responsive to strain and temperature variations. Therefore, it is necessary to invent effective strategies to decouple this unwanted crosstalk for accurate and noise-free strain sensing in complex environmental conditions. Herein, a temperature-dependent 3D percolation model is presented capable of predicting the sensory response of stretchable strain sensors made of carbon nanotubes-elastomer nanocomposites under transient changes in strain and temperature. The nanocomposite strain sensors are fabricated by the vacuum filtration process, and their dynamic thermoelectromechanical properties are systematically investigated. The experimental results are then used to initiate, develop, and validate the proposed model. After the model validation, further studies are conducted to assess the dynamic response of strain sensors containing different amounts of carbon nanotubes at high temperatures, their signal-to-noise ratio, and temperature coefficient of resistance. Finally, to simulate a real-world scenario, virtual displacement and temperature profiles are generated, and the corresponding dynamic response of a strain sensor is predicted utilizing the modified 3D percolation model.
Original language | English |
---|---|
Article number | 113122 |
Journal | Sensors and Actuators A: Physical |
Volume | 332 |
Issue number | Part 1 |
Early online date | 20 Sept 2021 |
DOIs | |
Publication status | Published - 1 Dec 2021 |
Keywords
- Carbon nanotube nanocomposite
- Modified percolation model
- Strain sensors
- Temperature coefficient of resistance
- Thermoelectromechanical properties
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering