Abstract
Light trapping is a crucial mechanism for synchronization in optical communication. Especially on the level of single photons, control of the exact emission time is desirable. In this paper, a single-photon buffering device composed of a quantum dot doped with a single Mn atom in a cavity is theoretically proposed. A method to detain a single cavity photon as an excitation of the dot is presented. The storage scheme is based on bright to dark exciton conversion performed with an off-resonant external optical field and mediated via a spin-flip with the magnetic ion. The induced Stark shift brings both exciton states to resonance and results in an excitation transfer to the optically inactive one. The stored photon can be read out on demand in the same manner by repopulating the bright state, which has a short lifetime. The results indicate the possibility to suspend a photon for almost two orders of magnitude longer than the lifetime of the bright exciton.
Original language | English |
---|---|
Article number | 2100131 |
Journal | Advanced Quantum Technologies |
Volume | 5 |
Issue number | 4 |
Early online date | 27 Jan 2022 |
DOIs | |
Publication status | Published - Apr 2022 |
Keywords
- optical cavities
- quantum emitters
- quantum optics
- single photons
- storage
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Condensed Matter Physics
- Statistical and Nonlinear Physics
- Electronic, Optical and Magnetic Materials
- Computational Theory and Mathematics
- Mathematical Physics
- Electrical and Electronic Engineering