Abstract
This study presents an experimental approach to measure the density distribution of expanded bed adsorption (EBA) matrices. We report on the use of a series of solutions of caesium trifluoroacetate (CsTFA) of varying density spun in a laboratory centrifuge so as to separate representative matrix samples on the basis of bead density. Mass data was used to plot a decumulative density distribution for the matrix. By performing laser light scattering-based measurements on the same samples of matrixthe variation in particle size with density was determined. Particle settling velocity distributions were then calculated using these data and compared with a settling velocity distribution calculated on the basis of an assumed constant bead density. The study demonstrates a reliable and simple method for the characterisation of matrix density distribution. For the case of the Streamline matrices tested the particle size distribution is constant with varying bead density. Bead densities varied from 1.5 to 2.1 g/cm3 in the CsTFA solutions. These were then adjusted using bead porosity to give a density range of 1.11-1.33 g/cm 3 in aqueous buffer (assumed 1.0 g/cm3) The differences in resultant settling velocity distributions when based upon measured density distribution than when based upon an assumed mean density value were shown to be insignificant. This result confirms experimentally that an assumption of a single constant mean density for EBA particles is acceptable for hydrodynamic modelling and performance prediction purposes.
Original language | English |
---|---|
Pages (from-to) | 659-663 |
Number of pages | 5 |
Journal | Biotechnology and Bioengineering |
Volume | 92 |
Issue number | 5 |
DOIs | |
Publication status | Published - 5 Dec 2005 |
Keywords
- Expanded bed adsorption
- Particle density distribution
ASJC Scopus subject areas
- Biotechnology
- Microbiology