Abstract
The lack of detailed life history (LH) information (e.g. age, growth, size at maturity, sex composition etc.) for many species of conservation importance limits the implementation of appropriate conservation measures. Typically, LH information is acquired using lethal sampling techniques, which undermines the goal of conservation. This is particularly problematic for many shark species that have low fecundity and slow growth rates. Here we tested the use of non-invasive laser photogrammetry to measure body morphometry in vivo. We used random forest classification models to identify allometric relationships (ratios between body measurements) that discriminated between the sex and stage of sexual maturity of Scyliorhinus canicula. We coupled the use of allometric ratios (determined from cadavers) with parallel laser photogrammetry, in order to collect total length (TL) and finer scale morphometrics from 37 free-swimming individuals. TL measurements proved to be accurate (SE = 5.2%) and precise (CV = 1.8%), and did not differ significantly from the known TL of the respective animal (t36 = 0.7, P = 0.5). Conditional Inference tree model predictions of free-swimming sharks correctly predicted 100% of mature males and 79% of immature males. Our results suggest that when used together, allometric ratios and parallel laser photogrammetry have the potential to be a promising alternative to collect essential life history information from free swimming animals and avoids the need for destructive sampling.
Original language | English |
---|---|
Article number | 213 |
Journal | Marine Biology |
Volume | 164 |
Issue number | 11 |
Early online date | 23 Oct 2017 |
DOIs | |
Publication status | Published - Nov 2017 |
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Aquatic Science
- Ecology