Design principles for efficient photoelectrodes in solar rechargeable redox flow cell applications

Dowon Bae, Gerasimos Kanellos, Gerrit M. Faasse, Emil Dražević, Anirudh Venugopal, Wilson A. Smith

Research output: Contribution to journalArticlepeer-review

14 Downloads (Pure)

Abstract

Recent advances in photoelectrochemical redox flow cells, such as solar redox flow batteries, have received much attention as an alternative integrated technology for simultaneous conversion and storage of solar energy. Theoretically, it has been reported that even single- photon devices can demonstrate unbiased photo-charging with high solar-to-chemical conversion efficiency; however, the poor redox kinetics of photoelectrodes reported thus far severely limit the photo-charging performance. Here, we report a band alignment design and propose surface coverage control to reduce the charge extraction barrier and create a facile carrier pathway from both n- and p-type photoelectrodes to the electrolyte with the respective redox reaction. Based on these observations, we develop a single-photon photo- charging device with a solar-to-chemical conversion efficiency over 9.4% for a redox flow cell system. Along with these findings, we provide design principles for simultaneous optimisation, which may lead to enhanced conversion efficiency in the further development of solar- rechargeable redox flow cells.
Original languageEnglish
Article number17
JournalCommunications Materials
Volume1
DOIs
Publication statusPublished - 14 Apr 2020

Fingerprint

Dive into the research topics of 'Design principles for efficient photoelectrodes in solar rechargeable redox flow cell applications'. Together they form a unique fingerprint.

Cite this