Dehydropolymerization of H3B·NMeH2 to Form Polyaminoboranes Using [Rh(Xantphos-alkyl)] Catalysts

Gemma M. Adams, Annie L. Colebatch, Joseph T. Skornia, Alasdair I. McKay, Heather C. Johnson, Guy C. Lloyd-Jones, Stuart Alan Macgregor, Nicholas A. Beattie, Andrew S. Weller

Research output: Contribution to journalArticle

35 Citations (Scopus)
23 Downloads (Pure)

Abstract

A systematic study of the catalyst structure and overall charge for the dehydropolymerization of H3B·NMeH2 to form N-methyl polyaminoborane is reported using catalysts based upon neutral and cationic {Rh(Xantphos-R)} fragments in which PR2 groups are selected from Et, iPr, and tBu. The most efficient systems are based upon {Rh(Xantphos-iPr)}, i.e., [Rh(κ3-P,O,P-Xantphos-iPr)(H)21-H3B·NMe3)][BArF 4], 6, and Rh(κ3-P,O,P-Xantphos-iPr)H, 11. While H2 evolution kinetics show both are fast catalysts (ToF ≈ 1500 h-1) and polymer growth kinetics for dehydropolymerization suggest a classical chain growth process for both, neutral 11 (Mn = 28 000 g mol-1, D = 1.9) promotes significantly higher degrees of polymerization than cationic 6 (Mn = 9000 g mol-1, D = 2.9). For 6 isotopic labeling studies suggest a rate-determining NH activation, while speciation studies, coupled with DFT calculations, show the formation of a dimetalloborylene [{Rh(κ3-P,O,P-Xantphos-iPr)}2B]+ as the, likely dormant, end product of catalysis. A dual mechanism is proposed for dehydropolymerization in which neutral hydrides (formed by hydride transfer in cationic 6 to form a boronium coproduct) are the active catalysts for dehydrogenation to form aminoborane. Contemporaneous chain-growth polymer propagation is suggested to occur on a separate metal center via head-to-tail end chain B-N bond formation of the aminoborane monomer, templated by an aminoborohydride motif on the metal.

Original languageEnglish
Pages (from-to)1481-1495
Number of pages15
JournalJournal of the American Chemical Society
Volume140
Issue number4
Early online date29 Dec 2017
DOIs
Publication statusPublished - 31 Jan 2018

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Dehydropolymerization of H<sub>3</sub>B·NMeH<sub>2</sub> to Form Polyaminoboranes Using [Rh(Xantphos-alkyl)] Catalysts'. Together they form a unique fingerprint.

Cite this