@inproceedings{06a355baab294a328eae24bde8edf326,
title = "Deep Decomposition Learning for Inverse Imaging Problems",
abstract = "Deep learning is emerging as a new paradigm for solving inverse imaging problems. However, the deep learning methods often lack the assurance of traditional physics-based methods due to the lack of physical information considerations in neural network training and deploying. The appropriate supervision and explicit calibration by the information of the physic model can enhance the neural network learning and its practical performance. In this paper, inspired by the geometry that data can be decomposed by two components from the null-space of the forward operator and the range space of its pseudo-inverse, we train neural networks to learn the two components and therefore learn the decomposition, i.e. we explicitly reformulate the neural network layers as learning range-nullspace decomposition functions with reference to the layer inputs, instead of learning unreferenced functions. We empirically show that the proposed framework demonstrates superior performance over recent deep residual learning, unrolled learning and nullspace learning on tasks including compressive sensing medical imaging and natural image super-resolution. Our code is available at https://github.com/edongdongchen/DDN.",
author = "Dongdong Chen and Davies, {Mike E.}",
note = "@inproceedings{chen2020deep, title={Deep decomposition learning for inverse imaging problems}, author={Chen, Dongdong and Davies, Mike E}, booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXVIII 16}, pages={510--526}, year={2020}, organization={Springer} }; 16th European Conference on Computer Vision 2020, ECCV 2020 ; Conference date: 23-08-2020 Through 28-08-2020",
year = "2020",
month = nov,
day = "3",
doi = "10.1007/978-3-030-58604-1_31",
language = "English",
isbn = "978-3-030-58603-4",
volume = "XXVIII",
series = "Lecture Notes in Computer Science",
publisher = "Springer",
pages = "510--526",
editor = "Andrea Vedaldi and Horst Bischof and Thomas Brox and Jan-Michael Frahm",
booktitle = "Computer Vision – ECCV 2020",
}