TY - JOUR
T1 - Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments
AU - Gutierrez, Tony
AU - Biddle, Jennifer
AU - Teske, Andreas P
AU - Aitken, Michael D
N1 - "This research was supported by a Marie Curie International Outgoing Fellowship (PIOF-GA-2008-220129) within the Seventh European Community Framework Programme. Sampling at Guaymas Basin was supported by the U.S. National Science Foundation (grant OCE-0647633) to AT. Partial support was also provided by the National Institute of Environmental Health Sciences (grant # 5 P42 ES005948)."
PY - 2015/7/7
Y1 - 2015/7/7
N2 - Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrocheical derivatives in coastal and open ocean environments. However, there is a paucity of knowledge on the diversity and function of these organisms in deep-sea sediment. Here we used stable-isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate polycyclic aromatic hydrocarbon (PAH)-degrading bacteria under aerobic conditions in sediments from Guaymas Basin with uniformly labeled [13C]-phenanthrene (PHE). The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from PHE enrichments) were identified to belong to the genus Cycloclasticus. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Cycloclasticus to determine their abundance in sediment incubations amended with unlabeled PHE and showed substantial increases in gene abundance during the experiments. We also isolated a strain, BG-2, representing the SIP-identified Cycloclasticus sequence (99.9% 16S rRNA gene sequence identity), and used this strain to provide direct evidence of PHE degradation and mineralization. In addition, we isolated Halomonas, Thalassospira, and Lutibacterium sp. with demonstrable PHE-degrading capacity from Guaymas Basin sediment. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of PAH-degrading bacteria in the deep-sea.
AB - Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrocheical derivatives in coastal and open ocean environments. However, there is a paucity of knowledge on the diversity and function of these organisms in deep-sea sediment. Here we used stable-isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate polycyclic aromatic hydrocarbon (PAH)-degrading bacteria under aerobic conditions in sediments from Guaymas Basin with uniformly labeled [13C]-phenanthrene (PHE). The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from PHE enrichments) were identified to belong to the genus Cycloclasticus. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Cycloclasticus to determine their abundance in sediment incubations amended with unlabeled PHE and showed substantial increases in gene abundance during the experiments. We also isolated a strain, BG-2, representing the SIP-identified Cycloclasticus sequence (99.9% 16S rRNA gene sequence identity), and used this strain to provide direct evidence of PHE degradation and mineralization. In addition, we isolated Halomonas, Thalassospira, and Lutibacterium sp. with demonstrable PHE-degrading capacity from Guaymas Basin sediment. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of PAH-degrading bacteria in the deep-sea.
U2 - 10.3389/fmicb.2015.00695
DO - 10.3389/fmicb.2015.00695
M3 - Article
C2 - 26217326
SN - 1664-302X
VL - 6
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
M1 - 695
ER -