TY - JOUR
T1 - Crystallography Companion Agent for High-throughput Materials Discovery
AU - Maffettone, Phillip M.
AU - Banko, Lars
AU - Cui, Peng
AU - Lysogorskiy, Yury
AU - Little, Marc A.
AU - Olds, Daniel
AU - Ludwig, Alfred
AU - Cooper, Andrew I.
N1 - Funding Information:
We acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) (grant no. EP/N004884/1; P.M.M., M.A.L. and A.I.C.), BNL Laboratory Directed Research and Development (LDRD) projects 20-032 ‘Accelerating materials discovery with total scattering via machine learning’ (P.M.M. and D.O.), the Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design (P.C. and A.I.C.) and the German Research Foundation (DFG) as part of the Collaborative Research Centre TRR87/3 ‘Pulsed high power plasmas for the synthesis of nanostructured functional layers’ (SFB-TR 87), project C2 (L.B., Y.L. and A.L.). This research utilized the PDF (28-ID-1) Beamline and resources of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. We thank ZGH (Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe, Ruhr-Universität Bochum) and Diamond Light Source for access to beamlines I19 (MT15777) and I11 (EE17193) for XRD measurements.
Publisher Copyright:
© 2021, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.
PY - 2021/4
Y1 - 2021/4
N2 - The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone and impossible to scale. With the advent of autonomous robotic scientists or self-driving laboratories, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifications—rather than absolutes—to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering substantial time savings. It is demonstrated on a diverse set of organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches and robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.
AB - The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone and impossible to scale. With the advent of autonomous robotic scientists or self-driving laboratories, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifications—rather than absolutes—to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering substantial time savings. It is demonstrated on a diverse set of organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches and robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.
UR - http://www.scopus.com/inward/record.url?scp=85108405045&partnerID=8YFLogxK
U2 - 10.1038/s43588-021-00059-2
DO - 10.1038/s43588-021-00059-2
M3 - Article
AN - SCOPUS:85108405045
SN - 2662-8457
VL - 1
SP - 290
EP - 297
JO - Nature Computational Science
JF - Nature Computational Science
IS - 4
ER -