TY - JOUR
T1 - Crystallization kinetics and magnetic properties of Fe66Nb4B30 bulk metallic glass
AU - Stoica, M.
AU - Kumar, Santosh
AU - Roth, S.
AU - Ram, S.
AU - Eckert, J.
AU - Vaughan, G.
AU - Yavari, A. R.
N1 - cited By 26
PY - 2009/8
Y1 - 2009/8
N2 - Fe-based bulk metallic glasses (BMGs) have a high application potential because of their unique soft magnetic properties, mechanical behaviour and high corrosion resistance. Also, they can be obtained directly in the final shape suitable for use as magnetic sensors, magnetic valves, magnetic clutches etc. in different devices. Fe-based alloys able to form magnetic BMGs are of the type transition metal–metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 at.%. Recently, a new Fe-based BMG containing only 3 elements and a very high boron content was synthesized. The preparation of this BMG was done by employing the copper mold casting method and using the fluxing technique. This new BMG is ferromagnetic, with a Curie temperature around 550 K and a saturation magnetization of 105 Am2/kg. Differential scanning calorimetry (DSC) investigations revealed a reduced glass transition temperature of 0.55 and an extension of the supercooled liquid region of about 31 K, values which indicate a relatively good thermal stability. Despite of numerous studies about Fe-based BMGs, there is still a lack of data about the crystallization kinetics. Also, the intermediate metastable phases, which form upon crystallization from the amorphous state, as well as the mechanism of their formation, are not fully understood. The present work discusses the kinetics of the phase formation using the Kissinger analysis and Johnson–Mehl–Avrami plots, correlated with the results obtained upon X-ray diffraction (XRD) of samples with different metastable structures. Additionally, the magnetic behaviour of different phase(s) is presented.
AB - Fe-based bulk metallic glasses (BMGs) have a high application potential because of their unique soft magnetic properties, mechanical behaviour and high corrosion resistance. Also, they can be obtained directly in the final shape suitable for use as magnetic sensors, magnetic valves, magnetic clutches etc. in different devices. Fe-based alloys able to form magnetic BMGs are of the type transition metal–metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 at.%. Recently, a new Fe-based BMG containing only 3 elements and a very high boron content was synthesized. The preparation of this BMG was done by employing the copper mold casting method and using the fluxing technique. This new BMG is ferromagnetic, with a Curie temperature around 550 K and a saturation magnetization of 105 Am2/kg. Differential scanning calorimetry (DSC) investigations revealed a reduced glass transition temperature of 0.55 and an extension of the supercooled liquid region of about 31 K, values which indicate a relatively good thermal stability. Despite of numerous studies about Fe-based BMGs, there is still a lack of data about the crystallization kinetics. Also, the intermediate metastable phases, which form upon crystallization from the amorphous state, as well as the mechanism of their formation, are not fully understood. The present work discusses the kinetics of the phase formation using the Kissinger analysis and Johnson–Mehl–Avrami plots, correlated with the results obtained upon X-ray diffraction (XRD) of samples with different metastable structures. Additionally, the magnetic behaviour of different phase(s) is presented.
U2 - 10.1016/j.jallcom.2007.11.150
DO - 10.1016/j.jallcom.2007.11.150
M3 - Article
SN - 0925-8388
VL - 483
SP - 632
EP - 637
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
IS - 1-2
ER -