Abstract
Process modeling by means of Gaussian-based algorithms often suffers from redundant information which usually increases the estimation computational complexity without significantly improving the estimation performance. In this article, a non-arbitrary measurement selection criterion for Gaussian-based algorithms is proposed. The measurement selection criterion is based on the determination of the most significant measurement from both an estimation convergence perspective and the covariance matrix associated with the measurement. The selection criterion is independent from the nature of the measured variable. This criterion is used in conjunction with three Gaussian-based algorithms: the EIF (Extended Information Filter), the EKF (Extended Kalman Filter) and the UKF (Unscented Kalman Filter). Nevertheless, the measurement selection criterion shown herein can also be applied to other Gaussian-based algorithms. Although this work is focused on environment modeling, the results shown herein can be applied to other Gaussian-based algorithm implementations. Mathematical descriptions and implementation results that validate the proposal are also included in this work.
Original language | English |
---|---|
Pages (from-to) | 287-310 |
Number of pages | 24 |
Journal | Entropy |
Volume | 15 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2013 |
Keywords
- Features selection
- Mapping
- SLAM
ASJC Scopus subject areas
- General Physics and Astronomy