Cost-aware Feature Selection for IoT Device Classification

Biswadeep Chakraborty, Dinil Mon Divakaran, Ido Nevat, Gareth W. Peters, Mohan Gurusamy

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)


Classification of IoT devices into different types is of paramount importance, from multiple perspectives, including security and privacy aspects. Recent works have explored machine learning techniques for fingerprinting (or classifying) IoT devices, with promising results. However, existing works have assumed that the features used for building the machine learning models are readily available or can be easily extracted from the network traffic; in other words, they do not consider the costs associated with feature extraction. In this work, we take a more realistic approach, and argue that feature extraction has a cost, and the costs are different for different features. We also take a step forward from the current practice of considering the misclassification loss as a binary value, and make a case for different losses based on the misclassification performance. Thereby, and more importantly, we introduce the notion of risk for IoT device classification. We define and formulate the problem of cost-aware IoT device classification. This being a combinatorial optimization problem, we develop a novel algorithm to solve it in a fast and effective way using the Cross-Entropy (CE) based stochastic optimization technique. Using traffic of real devices, we demonstrate the capability of the CE based algorithm in selecting features with minimal risk of misclassification while keeping the cost for feature extraction within a specified limit.

Original languageEnglish
JournalIEEE Internet of Things Journal
Publication statusE-pub ahead of print - 13 Jan 2021


  • .
  • Cameras
  • Feature extraction
  • Internet of Things
  • Machine learning
  • Object recognition
  • Optimization
  • Privacy

ASJC Scopus subject areas

  • Signal Processing
  • Information Systems
  • Hardware and Architecture
  • Computer Science Applications
  • Computer Networks and Communications

Fingerprint Dive into the research topics of 'Cost-aware Feature Selection for IoT Device Classification'. Together they form a unique fingerprint.

Cite this