Convective heat transfer coefficients for exterior building surfaces: Existing correlations and CFD modelling

Thijs Defraeye*, Bert Blocken, Jan Carmeliet

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

206 Citations (Scopus)

Abstract

Convective heat transfer at exterior building surfaces has an impact on the design and performance of building components such as double-skin facades, solar collectors, solar chimneys and ventilated photovoltaic arrays, and also affects the thermal climate and cooling load in urban areas. In this study, an overview is given of existing correlations of the exterior convective heat transfer coefficient (CHTC) with the wind speed, indicating significant differences between these correlations. As an alternative to using existing correlations, the applicability of CFD to obtain forced CHTC correlations is evaluated, by considering a cubic building in an atmospheric boundary layer. Steady Reynolds-averaged Navier-Stokes simulations are performed and, instead of the commonly used wall functions, low-Reynolds number modelling (LRNM) is used to model the boundary-layer region for reasons of improved accuracy. The flow field is found to become quasi independent of the Reynolds number at Reynolds numbers of about 105. This allows limiting the wind speed at which the CHTC is evaluated and thus the grid resolution in the near-wall region, which significantly reduces the computational expense. The distribution of the power-law CHTC-U10 correlation over the windward and leeward surfaces is presented (U10= reference wind speed at 10 m height). It is shown that these correlations can be accurately determined by simulations with relatively low wind speed values, which avoids the use of excessively fine grids for LRNM, and by using only two or three discrete wind speed values, which limits the required number of CFD simulations.

Original languageEnglish
Pages (from-to)512-522
Number of pages11
JournalEnergy Conversion and Management
Volume52
Issue number1
DOIs
Publication statusPublished - Jan 2011

Keywords

  • Building
  • Computational fluid dynamics
  • Correlation
  • Cube
  • Surface transfer coefficient
  • Wind speed

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Convective heat transfer coefficients for exterior building surfaces: Existing correlations and CFD modelling'. Together they form a unique fingerprint.

Cite this