Controlling the Crystallisation and Hydration State of Crystalline Porous Organic Salts

Megan O'Shaughnessy*, Alex C. Padgham, Rob Clowes, Marc A. Little, Michael C. Brand, Hang Qu, Anna G. Slater*, Andrew I. Cooper*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
9 Downloads (Pure)


Crystalline porous organic salts (CPOS) are a subclass of molecular crystals. The low solubility of CPOS and their building blocks limits the choice of crystallisation solvents to water or polar alcohols, hindering the isolation, scale-up, and scope of the porous material. In this work, high throughput screening was used to expand the solvent scope, resulting in the identification of a new porous salt, CPOS-7, formed from tetrakis(4-sulfophenyl)methane (TSPM) and tetrakis(4-aminophenyl)methane (TAPM). CPOS-7 does not form with standard solvents for CPOS, rather a hydrated phase (Hydrate2920) previously reported is isolated. Initial attempts to translate the crystallisation to batch led to challenges with loss of crystallinity and Hydrate2920 forming favorably in the presence of excess water. Using acetic acid as a dehydrating agent hindered formation of Hydrate2920 and furthermore allowed for direct conversion to CPOS-7. To allow for direct formation of CPOS-7 in high crystallinity flow chemistry was used for the first time to circumvent the issues found in batch. CPOS-7 and Hydrate2920 were shown to have promise for water and CO2 capture, with CPOS-7 having a CO2 uptake of 4.3 mmol/g at 195 K, making it one of the most porous CPOS reported to date.

Original languageEnglish
Article numbere202302420
JournalChemistry - A European Journal
Issue number64
Early online date6 Oct 2023
Publication statusPublished - 16 Nov 2023


  • crystalline porous organic salts
  • dehydration protocol
  • flow chemistry
  • high-throughput screening
  • porous materials

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Organic Chemistry


Dive into the research topics of 'Controlling the Crystallisation and Hydration State of Crystalline Porous Organic Salts'. Together they form a unique fingerprint.

Cite this