TY - JOUR
T1 - Controlling the Crystallisation and Hydration State of Crystalline Porous Organic Salts
AU - O'Shaughnessy, Megan
AU - Padgham, Alex C.
AU - Clowes, Rob
AU - Little, Marc A.
AU - Brand, Michael C.
AU - Qu, Hang
AU - Slater, Anna G.
AU - Cooper, Andrew I.
N1 - Publisher Copyright:
© 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
PY - 2023/11/16
Y1 - 2023/11/16
N2 - Crystalline porous organic salts (CPOS) are a subclass of molecular crystals. The low solubility of CPOS and their building blocks limits the choice of crystallisation solvents to water or polar alcohols, hindering the isolation, scale-up, and scope of the porous material. In this work, high throughput screening was used to expand the solvent scope, resulting in the identification of a new porous salt, CPOS-7, formed from tetrakis(4-sulfophenyl)methane (TSPM) and tetrakis(4-aminophenyl)methane (TAPM). CPOS-7 does not form with standard solvents for CPOS, rather a hydrated phase (Hydrate2920) previously reported is isolated. Initial attempts to translate the crystallisation to batch led to challenges with loss of crystallinity and Hydrate2920 forming favorably in the presence of excess water. Using acetic acid as a dehydrating agent hindered formation of Hydrate2920 and furthermore allowed for direct conversion to CPOS-7. To allow for direct formation of CPOS-7 in high crystallinity flow chemistry was used for the first time to circumvent the issues found in batch. CPOS-7 and Hydrate2920 were shown to have promise for water and CO2 capture, with CPOS-7 having a CO2 uptake of 4.3 mmol/g at 195 K, making it one of the most porous CPOS reported to date.
AB - Crystalline porous organic salts (CPOS) are a subclass of molecular crystals. The low solubility of CPOS and their building blocks limits the choice of crystallisation solvents to water or polar alcohols, hindering the isolation, scale-up, and scope of the porous material. In this work, high throughput screening was used to expand the solvent scope, resulting in the identification of a new porous salt, CPOS-7, formed from tetrakis(4-sulfophenyl)methane (TSPM) and tetrakis(4-aminophenyl)methane (TAPM). CPOS-7 does not form with standard solvents for CPOS, rather a hydrated phase (Hydrate2920) previously reported is isolated. Initial attempts to translate the crystallisation to batch led to challenges with loss of crystallinity and Hydrate2920 forming favorably in the presence of excess water. Using acetic acid as a dehydrating agent hindered formation of Hydrate2920 and furthermore allowed for direct conversion to CPOS-7. To allow for direct formation of CPOS-7 in high crystallinity flow chemistry was used for the first time to circumvent the issues found in batch. CPOS-7 and Hydrate2920 were shown to have promise for water and CO2 capture, with CPOS-7 having a CO2 uptake of 4.3 mmol/g at 195 K, making it one of the most porous CPOS reported to date.
KW - crystalline porous organic salts
KW - dehydration protocol
KW - flow chemistry
KW - high-throughput screening
KW - porous materials
UR - http://www.scopus.com/inward/record.url?scp=85173473023&partnerID=8YFLogxK
U2 - 10.1002/chem.202302420
DO - 10.1002/chem.202302420
M3 - Article
C2 - 37615406
AN - SCOPUS:85173473023
SN - 0947-6539
VL - 29
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 64
M1 - e202302420
ER -