Control of chirality, bond flexing and anharmonicity in an electric field

Zi Li, Xing Nie, Tianlv Xu, Shuman Li, Yong Yang, Herbert Früchtl, Tanja van Mourik, Steven R. Kirk, Martin J. Paterson, Yasuteru Shigeta, Samantha Jenkins

Research output: Contribution to journalArticlepeer-review

Abstract

We located “hidden” S-character chirality in formally achiral glycine using a vector-based interpretation of the total electronic charge density distribution. We induced the formation of stereoisomers in glycine by the application of an electric field. Control of chirality was indicated from the proportionate response to a non-structurally distorting electric field. The bond-flexing was determined to be a measure of bond strain, which could be a factor of three lower or higher, depending on the direction of the electric field, than in the absence of the electric field. The bond-anharmonicity was found to be approximately independent of the electric field. We also compared the formally achiral glycine with the chiral molecules alanine and lactic acid, quantifying the preferences for the S and R stereoisomers. The proportional response of the chiral discrimination to the magnitude and direction of the applied electric field indicated use of the chirality discrimination as a molecular similarity measure.
Original languageEnglish
Article numbere26793
JournalInternational Journal of Quantum Chemistry
Early online date7 Aug 2021
DOIs
Publication statusE-pub ahead of print - 7 Aug 2021

Keywords

  • chirality
  • electric field
  • glycine
  • next generation QTAIM

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Control of chirality, bond flexing and anharmonicity in an electric field'. Together they form a unique fingerprint.

Cite this