Abstract
Background: A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Results: Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Conclusions: Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model. © 2010 Saithong et al.
Original language | English |
---|---|
Article number | e15589 |
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | PLoS ONE |
Volume | 5 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2010 |