Conjugacy geodesics and growth in dihedral Artin groups

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
6 Downloads (Pure)

Abstract

In this paper, we describe conjugacy geodesic representatives in any dihedral Artin group G(m), m ≥ 3, which we then use to calculate asymptotics for the conjugacy growth of G(m), and show that the conjugacy growth series of G(m) with respect to the ‘free product’ generating set {x, y} is transcendental. We prove two additional properties of G(m) that connect to conjugacy, namely that the permutation conjugator length function is constant, and that the falsification by fellow traveler property (FFTP) holds with respect to {x, y}. These imply that the language of all conjugacy geodesics in G(m) with respect to {x, y} is regular.

Original languageEnglish
Pages (from-to)465-507
Number of pages43
JournalNew York Journal of Mathematics
Volume31
Early online date18 Mar 2025
Publication statusPublished - 2025

Keywords

  • Conjugacy growth
  • FFTP
  • conjugator length
  • dihedral Artin groups

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Conjugacy geodesics and growth in dihedral Artin groups'. Together they form a unique fingerprint.

Cite this