TY - JOUR
T1 - Comparing the heat stability of soya protein and milk whey protein emulsions
AU - Euston, Stephen R.
AU - Al-Bakkush, Al Amari
AU - Campbell, Lydia
PY - 2009/12
Y1 - 2009/12
N2 - The heat stability of emulsions stabilized by WPC or SPI or mixtures of the two are compared by following the change in oil droplet number during heating, and applying kinetic rate equations to calculate the rate constant (k) for destabilization. SPI emulsions were found to be unstable to heat at pH around the pI, whilst being stable at pH further from the pI. This is related to the pH dependent solubility of soy proteins. This determined that a pH close to the pI (pH 4.5) be used for further studies so as to give a heat labile emulsion. Both WPC and SPI emulsions showed a weak dependence of k on protein concentration at pH 4.5, and an increasing k as the temperature increased. Arrhenius plots for emulsions made with WPC were bilinear, whilst those for SPI followed a single straight line. The change in slope of the Arrhenius plots for the WPC emulsions occurred around 70 °C, lower than would be expected from the denaturation temperature of ß-lactoglobulin, the protein that dominates the thermal behaviour of WPC. The activation energies for WPC and SPI emulsions calculated from the slopes of the Arrhenius plots are slightly lower for WPC and considerably lower for SPI than the equivalent values in the literature for these proteins in solution. This, and the apparent lower denaturation temperature of ß-lactoglobulin in emulsions, we explain by hypothesizing that the WPC and SPI proteins are already partially denatured by surface adsorption when they are heated, and thus require less energy to denature, and unfold at lower temperatures than native non-adsorbed proteins. © 2009 Elsevier Ltd. All rights reserved.
AB - The heat stability of emulsions stabilized by WPC or SPI or mixtures of the two are compared by following the change in oil droplet number during heating, and applying kinetic rate equations to calculate the rate constant (k) for destabilization. SPI emulsions were found to be unstable to heat at pH around the pI, whilst being stable at pH further from the pI. This is related to the pH dependent solubility of soy proteins. This determined that a pH close to the pI (pH 4.5) be used for further studies so as to give a heat labile emulsion. Both WPC and SPI emulsions showed a weak dependence of k on protein concentration at pH 4.5, and an increasing k as the temperature increased. Arrhenius plots for emulsions made with WPC were bilinear, whilst those for SPI followed a single straight line. The change in slope of the Arrhenius plots for the WPC emulsions occurred around 70 °C, lower than would be expected from the denaturation temperature of ß-lactoglobulin, the protein that dominates the thermal behaviour of WPC. The activation energies for WPC and SPI emulsions calculated from the slopes of the Arrhenius plots are slightly lower for WPC and considerably lower for SPI than the equivalent values in the literature for these proteins in solution. This, and the apparent lower denaturation temperature of ß-lactoglobulin in emulsions, we explain by hypothesizing that the WPC and SPI proteins are already partially denatured by surface adsorption when they are heated, and thus require less energy to denature, and unfold at lower temperatures than native non-adsorbed proteins. © 2009 Elsevier Ltd. All rights reserved.
KW - Activation energy
KW - Emulsion heat stability
KW - SPI
KW - WPC
UR - http://www.scopus.com/inward/record.url?scp=70149109146&partnerID=8YFLogxK
U2 - 10.1016/j.foodhyd.2009.08.004
DO - 10.1016/j.foodhyd.2009.08.004
M3 - Article
SN - 0268-005X
VL - 23
SP - 2485
EP - 2492
JO - Food Hydrocolloids
JF - Food Hydrocolloids
IS - 8
ER -