TY - JOUR
T1 - Comparative study of solid oxide fuel cell combined heat and power system with Multi-Stage Exhaust Chemical Energy Recycling: Modeling, experiment and optimization
AU - Zhang, Li
AU - Xing, Yaohua
AU - Xu, Hong
AU - Wang, Hongtao
AU - Zhong, Jie
AU - Xuan, Jin
PY - 2017/5/1
Y1 - 2017/5/1
N2 - In this paper, a novel Multi-Stage Exhaust Energy Recycling strategy was proposed and optimized to maximize the system efficiency and performance of solid oxide fuel cell-combined heating and power (SOFC-CHP). Both process modeling and experiment work based on 1 kW SOFC-CHP systems were carried out to prove the concept and optimize the system. It is found that the system with multi-stage exhaust gas combustion (MS-EGC) will reduce the system operating temperature from 1149 °C to 830 °C, which significantly increases the safety of system operation and reduces the material requirement. The system combining MS-EGC with anode off gas recovery (MS-AOGR & EGC) leads to highest overall co-generation efficiency up to 92%. A coupled reactor integrating MS-EGC modules was developed and tested for a 1 kW SOFC system to realize the proposed strategy. The results showed that in MS-EGC, recycling of thermal energy at first stage rarely affects the chemical energy utilization in subsequent stages and the overall system performance, further confirming the advantages of the innovative multi-stage energy recycling strategy.
AB - In this paper, a novel Multi-Stage Exhaust Energy Recycling strategy was proposed and optimized to maximize the system efficiency and performance of solid oxide fuel cell-combined heating and power (SOFC-CHP). Both process modeling and experiment work based on 1 kW SOFC-CHP systems were carried out to prove the concept and optimize the system. It is found that the system with multi-stage exhaust gas combustion (MS-EGC) will reduce the system operating temperature from 1149 °C to 830 °C, which significantly increases the safety of system operation and reduces the material requirement. The system combining MS-EGC with anode off gas recovery (MS-AOGR & EGC) leads to highest overall co-generation efficiency up to 92%. A coupled reactor integrating MS-EGC modules was developed and tested for a 1 kW SOFC system to realize the proposed strategy. The results showed that in MS-EGC, recycling of thermal energy at first stage rarely affects the chemical energy utilization in subsequent stages and the overall system performance, further confirming the advantages of the innovative multi-stage energy recycling strategy.
U2 - 10.1016/j.enconman.2017.02.045
DO - 10.1016/j.enconman.2017.02.045
M3 - Article
SN - 0196-8904
VL - 139
SP - 79
EP - 88
JO - Energy Conversion and Management
JF - Energy Conversion and Management
ER -