Abstract
Both an open-air fumigation system and a laboratory-based system were used to expose decomposing Scots pine (Pinus sylvestris L.) needles to controlled concentrations of SO2 (arithmetric mean less-than-or-equal-to 48 nl litre-1) during a period, in total, of 301 days. The experimental design involved reciprocal litter transplants from 'clean' to 'polluted' air and vice versa, using the two fumigation systems. The objectives were (1) to observe the effects of SO2 on leachate and litter chemistry, (2) to assess whether pollution-induced changes are reversible in clean air, and (3) to test the suitability of small-scale fumigation chambers (litter microcosms) compared with open-air systems in soil studies.
Through the formation of SO4(2-) ions, dry-deposited SO2 exhibited a marked capacity to remove 'base' cations (Ca2+, Mg2+ and K+) from decomposing pine needles, and also to acidify litter leachates (as indicated by proton fluxes from the litter). When litter was transferred from polluted air (48 nl litre-1 SO2, in the open-air system) to either clean or polluted air in the laboratory, the effects of prior exposure to SO2 on leachate composition were still evident even after 86 days: the role of base cation depletion within the litter, caused by SO42- -induced leaching, is discussed.
Data for SO42- fluxes in leachates collected from the small-scale chambers indicated that dry deposition velocities for SO2 were not anomalously high within this fumigation system. It is therefore concluded that microcosm studies can provide information complementary to the open-air fumigation approach in soils research.
Original language | English |
---|---|
Pages (from-to) | 325-343 |
Number of pages | 19 |
Journal | Environmental Pollution |
Volume | 74 |
Issue number | 4 |
Publication status | Published - 1991 |
Keywords
- SULFUR-DIOXIDE
- ACIDIC DEPOSITION
- FOREST
- SOIL
- ACIDIFICATION
- NITROGEN
- THROUGHFALL
- SO2