Abstract
This paper describes the application of cerebellar model articulation controller (CMAC) and B-spline neural networks to switched reluctance motor (SRM) torque estimation and control. Non-linear adaptive systems such as neural networks are well suited to learning the highly non-linear electromagnetic characteristics of the SRM for the purposes of linearisation and simplification of their control and a number of researchers have investigated their use in this context. CMAC and B-spline neural networks are particularly suited to this application area due to their potential for low-cost, high-speed implementation including the capability for real-time, on-line adaptation. CMAC and B-spline neural networks have successfully been applied both to torque ripple minimisation and to torque estimation in simulation and, implemented using FPGA technology, experimentally. This paper describes those applications with particular emphasis on the suitability of the CMAC and B-spline neural networks and gives details of their FPGA implementation.
Original language | English |
---|---|
Title of host publication | Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society, 2003 |
Pages | 2453-2458 |
Number of pages | 6 |
Volume | 3 |
DOIs | |
Publication status | Published - 2003 |
Event | 29th Annual Conference of the IEEE Industrial Electronics Society - Roanoke, VA, United States Duration: 2 Nov 2003 → 6 Nov 2003 |
Conference
Conference | 29th Annual Conference of the IEEE Industrial Electronics Society |
---|---|
Country/Territory | United States |
City | Roanoke, VA |
Period | 2/11/03 → 6/11/03 |