Abstract
In this paper, classification of ball bearing faults using vibration signals is presented. A review of condition monitoring using vibration signals with various intelligent systems is first presented. A hybrid intelligent model, FMM-RF, consisting of the Fuzzy Min-Max (FMM) neural network and the Random Forest (RF) model, is proposed. A benchmark problem is tested to evaluate the practicality of the FMM-RF model. The proposed model is then applied to a real-world dataset. In both cases, power spectrum and sample entropy features are used for classification. Results from both experiments show good accuracy achieved by the proposed FMM-RF model. In addition, a set of explanatory rules in the form of a decision tree is extracted to justify the predictions. The outcomes indicate the usefulness of FMM-RF in performing classification of ball bearing faults.
Original language | English |
---|---|
Pages (from-to) | 427–435 |
Number of pages | 9 |
Journal | Applied Soft Computing |
Volume | 57 |
Early online date | 21 Apr 2017 |
DOIs | |
Publication status | Published - Aug 2017 |