Characterisation of the Convective Hot-Air Drying and Vacuum Microwave Drying of Cassia alata: Antioxidant Activity, Essential Oil Volatile Composition and Quality Studies

Lisa Yen Wen Chua, Bee Lin Chua, Adam Figiel, Chien Hwa Chong, Aneta Wojdyło, Antoni Szumny, Krzysztof Lech

Research output: Contribution to journalArticle

12 Citations (Scopus)
22 Downloads (Pure)

Abstract

The preservation of active constituents in Cassia alata through the removal of moisture is crucial in producing a final product with high antioxidant activity. This study aims to determine the influences of various drying methods and drying conditions on the antioxidant activity, volatiles and phytosterols content of C. alata. The drying methods used were convective drying (CD) at 40 °C, 50 °C and 60 °C; freeze drying; vacuum microwave drying (VMD) at 6, 9 and 12 W/g; and two-stage convective pre-drying followed by vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g. The drying kinetics of C. alata are best described by the thin-layer model (modified Page model). The highest antioxidant activity, TPC and volatile concentration were achieved with CD at 40 °C. GC-MS analysis identified the presence of 51 volatiles, which were mostly present in all samples but with quantitative variation. The dominant volatiles in fresh C. alata are 2-hexenal (60.28 mg 100 g-1 db), 1-hexanol (18.70 mg 100 g-1 db) and salicylic acid (15.05 mg 100 g-1 db). The concentration of phytosterols in fresh sample was 3647.48 mg 100 g-1 db, and the major phytosterols present in fresh and dried samples were β-sitosterol (1162.24 mg 100 g-1 db). CPD-VMFD was effective in ensuring the preservation of higher phytosterol content in comparison with CD at 50 °C. The final recommendation of a suitable drying method to dehydrate C. alata leaves is CD at 40 °C.

Original languageEnglish
Article number1625
JournalMolecules
Volume24
Issue number8
DOIs
Publication statusPublished - 24 Apr 2019

Fingerprint Dive into the research topics of 'Characterisation of the Convective Hot-Air Drying and Vacuum Microwave Drying of Cassia alata: Antioxidant Activity, Essential Oil Volatile Composition and Quality Studies'. Together they form a unique fingerprint.

Cite this