Channeling: a new class of dissolution in complex porous media

Hannah P. Menke*, Julien Maes, Sebastian Geiger

*Corresponding author for this work

Research output: Working paperPreprint

6 Downloads (Pure)

Abstract

The current conceptual model of mineral dissolution in porous media is comprised of three dissolution patterns (wormhole, compact, and uniform) - or regimes - that develop depending on the relative dominance of flow, diffusion, and reaction rate. Here, we examine the evolution of pore structure during acid injection using numerical simulations on two porous media structures of increasing complexity. We examine the boundaries between regimes and characterise the existence of a fourth regime called channeling, where already existing fast flow pathways are preferentially widened by dissolution. Channeling occurs in cases where the distribution in pore throat size results in orders of magnitude differences in flow rate for different flow pathways. This focusing of dissolution along only dominant flow paths induces an immediate, large change in permeability with a comparatively small change in porosity, resulting in a porosity-permeability relationship unlike any that has been previously seen. This work demonstrates that our current conceptual model of dissolution regimes must be modified to include channeling for accurate predictions of dissolution in applications such as geologic carbon storage and geothermal energy production.
Original languageEnglish
PublisherarXiv
DOIs
Publication statusPublished - 7 Nov 2022

Keywords

  • Porous media
  • Dissolution regimes
  • Channeling
  • Geologic CO2 Storage
  • Geothermal Energy
  • Reactive Transport
  • Reactive Infiltration Instabilities

Fingerprint

Dive into the research topics of 'Channeling: a new class of dissolution in complex porous media'. Together they form a unique fingerprint.

Cite this