Capsule-like assemblies in polar solvents

Reza Zadmard, Matthias Junkers, Thomas Schrader, Thomas Grawe, Arno Kraft

Research output: Contribution to journalArticle

73 Citations (Scopus)

Abstract

Calix[4]arene derivatives with four anionic groups at their upper rim form discrete 1:1 complexes with complementary calix[4]arene derivatives bearing four cationic groups at their upper rim. Each cation is bound by two anions, and vice versa, in a mutual chelate arrangement, reinforced by a network of ionic hydrogen bonds. These multiple electrostatic interactions lead to the formation of highly stable capsule-like assemblies even in polar protic solvents such as methanol and water. In the capsule interior a cavity is formed that is in principle large enough for the encapsulation of small aliphatic and aromatic guests (170-230 Å3). Monte Carlo simulations in water reproducibly lead to the same regular opimized structures. These differ mainly by their inner volume and flexibility, as demonstrated by molecular dynamics calculations. Most half-spheres can be synthesized by way of the tetrakis(chloromethyl) or the tetrabromocalix[4]arene intermediate. Oppositely charged calix[6]arenes also form strong complexes, but no indication was found for a lock in the cone conformation. The formation of the ball-shaped complexes from calix[4]arene building blocks was studied with Job plots, NMR titrations, NOESY, and variable-temperature experiments, as well as ESI-MS measurements. Investigations aimed at the inclusion of various guest molecules were carried out with alcohols, sulfoxides, benzene derivatives, and ammonium, as well as pyrazinium guests. Although binding isotherms were generated with cationic guests, these must be considered to be loosely associated around the seam rather than included inside the capsule.

Original languageEnglish
Pages (from-to)6511-6521
Number of pages11
JournalJournal of Organic Chemistry
Volume68
Issue number17
DOIs
Publication statusPublished - 1 Sep 2003

Fingerprint Dive into the research topics of 'Capsule-like assemblies in polar solvents'. Together they form a unique fingerprint.

  • Cite this

    Zadmard, R., Junkers, M., Schrader, T., Grawe, T., & Kraft, A. (2003). Capsule-like assemblies in polar solvents. Journal of Organic Chemistry, 68(17), 6511-6521. https://doi.org/10.1021/jo034592q