Can n-propanol form hydrate?

Antonin Chapoy, Ross Anderson, Hooman Haghighi, Terry Edwards, Bahman Tohidi

    Research output: Contribution to journalArticlepeer-review

    47 Citations (Scopus)


    Alcohols are generally considered hydrate inhibitors. The fact that 2-propanol, in addition to tert-butanol can form hydrates, suggests further investigation of this issue is required. In light of this, it was decided to assess the potential for hydrate formation by n-propanol. However, there are at present no data concerning its effects on hydrate stability available in the open literature. Here, we present freezing point data of n-propanol solutions (up to 80 mass %). These data suggest existence of a peritectic point at 263.05 K and formation of clathrate hydrate in the n-propanol-water system. To confirm whether n-propanol, like 2-propanol, forms mixed hydrates with structure I formers at elevated pressures, dissociation conditions were measured for aqueous solution of 10, 16.4, and 25 mass % n-propanol in the presence of pressures up to 40 MPa and natural gas at around 10 MPa. The results show that n-propanol does not display a hydrate inhibition effect, which would be expected from an alcohol and may, in fact, take part in clathrate formation. Consequently, m-propanol has ? been modeled as a hydrate-forming compound by use of a thermodynamic model. Comparisons between experimental hydrate dissociation data and model predictions suggest that n-propanol may take part in structure II hydrate formation, occupying the large cavity of the hydrate structure. © 2008 American Chemical Society.

    Original languageEnglish
    Pages (from-to)1689-1694
    Number of pages6
    JournalIndustrial and Engineering Chemistry Research
    Issue number5
    Publication statusPublished - 5 Mar 2008


    Dive into the research topics of 'Can n-propanol form hydrate?'. Together they form a unique fingerprint.

    Cite this