TY - JOUR
T1 - Biofunctionalized CdS Quantum Dots: A Case Study on Nanomaterial Toxicity in the Photocatalytic Wastewater Treatment Process
AU - Shivaji, Kavitha
AU - Sridharan, Kishore
AU - Kirubakaran, D. David
AU - Velusamy, Jayaramakrishnan
AU - Emadian, Seyedeh Sadrieh
AU - Krishnamurthy, Satheesh
AU - Devadoss, Anitha
AU - Nagarajan, Sanjay
AU - Das, Santanu
AU - Pitchaimuthu, Sudhagar
PY - 2023/6/6
Y1 - 2023/6/6
N2 - The toxic nature of inorganic nanostructured materials as photocatalysts is often not accounted for in traditional wastewater treatment reactions. Particularly, some inorganic nanomaterials employed as photocatalysts may release secondary pollutants in the form of ionic species that leach out due to photocorrosion. In this context, this work is a proof-of-concept study for exploring the environmental toxicity effect of extremely small-sized nanoparticles (<10 nm) like quantum dots (QDs) that are employed as photocatalysts, and in this study, cadmium sulfide (CdS) QDs are chosen. Typically, CdS is an excellent semiconductor with suitable bandgap and band-edge positions that is attractive for applications in solar cells, photocatalysis, and bioimaging. However, the leaching of toxic cadmium (Cd2+) metal ions due to the poor photocorrosion stability of CdS is a matter of serious concern. Therefore, in this report, a cost-effective strategy is devised for biofunctionalizing the active surface of CdS QDs by employing tea leaf extract, which is expected to hinder photocorrosion and prevent the leaching of toxic Cd2+ ions. The coating of tea leaf moieties (chlorophyll and polyphenol) over the CdS QDs (referred to hereafter as G-CdS QDs) was confirmed through structural, morphological, and chemical analysis. Moreover, the enhanced visible-light absorption and emission intensity of G-CdS QDs in comparison to that of C-CdS QDs synthesized through a conventional chemical synthesis approach confirmed the presence of chlorophyll/polyphenol coating. Interestingly, the polyphenol/chlorophyll molecules formed a heterojunction with CdS QDs and enabled the G-CdS QDs to exhibit enhanced photocatalytic activity in the degradation of methylene blue dye molecules over C-CdS QDs while effectively preventing photocorrosion as confirmed from cyclic photodegradation studies. Furthermore, detailed toxicity studies were conducted by exposing zebrafish embryos to the as-synthesized CdS QDs for 72 h. Surprisingly, the survival rate of the zebrafish embryos exposed to G-CdS QDs was equal to that of the control, indicating a significant reduction in the leaching of Cd2+ ions from G-CdS QDs in comparison to C-CdS QDs. The chemical environment of C-CdS and G-CdS before and after the photocatalysis reaction was examined by X-ray photoelectron spectroscopy. These experimental findings prove that biocompatibility and toxicity could be controlled by simply adding tea leaf extract during the synthesis of nanostructured materials, and revisiting green synthesis techniques can be beneficial. Furthermore, repurposing the discarded tea leaves may not only facilitate the control of toxicity of inorganic nanostructured materials but can also help in enhancing global environmental sustainability.
AB - The toxic nature of inorganic nanostructured materials as photocatalysts is often not accounted for in traditional wastewater treatment reactions. Particularly, some inorganic nanomaterials employed as photocatalysts may release secondary pollutants in the form of ionic species that leach out due to photocorrosion. In this context, this work is a proof-of-concept study for exploring the environmental toxicity effect of extremely small-sized nanoparticles (<10 nm) like quantum dots (QDs) that are employed as photocatalysts, and in this study, cadmium sulfide (CdS) QDs are chosen. Typically, CdS is an excellent semiconductor with suitable bandgap and band-edge positions that is attractive for applications in solar cells, photocatalysis, and bioimaging. However, the leaching of toxic cadmium (Cd2+) metal ions due to the poor photocorrosion stability of CdS is a matter of serious concern. Therefore, in this report, a cost-effective strategy is devised for biofunctionalizing the active surface of CdS QDs by employing tea leaf extract, which is expected to hinder photocorrosion and prevent the leaching of toxic Cd2+ ions. The coating of tea leaf moieties (chlorophyll and polyphenol) over the CdS QDs (referred to hereafter as G-CdS QDs) was confirmed through structural, morphological, and chemical analysis. Moreover, the enhanced visible-light absorption and emission intensity of G-CdS QDs in comparison to that of C-CdS QDs synthesized through a conventional chemical synthesis approach confirmed the presence of chlorophyll/polyphenol coating. Interestingly, the polyphenol/chlorophyll molecules formed a heterojunction with CdS QDs and enabled the G-CdS QDs to exhibit enhanced photocatalytic activity in the degradation of methylene blue dye molecules over C-CdS QDs while effectively preventing photocorrosion as confirmed from cyclic photodegradation studies. Furthermore, detailed toxicity studies were conducted by exposing zebrafish embryos to the as-synthesized CdS QDs for 72 h. Surprisingly, the survival rate of the zebrafish embryos exposed to G-CdS QDs was equal to that of the control, indicating a significant reduction in the leaching of Cd2+ ions from G-CdS QDs in comparison to C-CdS QDs. The chemical environment of C-CdS and G-CdS before and after the photocatalysis reaction was examined by X-ray photoelectron spectroscopy. These experimental findings prove that biocompatibility and toxicity could be controlled by simply adding tea leaf extract during the synthesis of nanostructured materials, and revisiting green synthesis techniques can be beneficial. Furthermore, repurposing the discarded tea leaves may not only facilitate the control of toxicity of inorganic nanostructured materials but can also help in enhancing global environmental sustainability.
UR - http://www.scopus.com/inward/record.url?scp=85162766874&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c00496
DO - 10.1021/acsomega.3c00496
M3 - Article
C2 - 37305291
SN - 2470-1343
VL - 8
SP - 19413
EP - 19424
JO - ACS Omega
JF - ACS Omega
IS - 22
ER -