Approximating Bayesian confidence regions in convex inverse problems

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Original languageEnglish
Title of host publication2016 IEEE Statistical Signal Processing Workshop (SSP)
Pages1-5
Number of pages5
ISBN (Electronic)978-1-4673-7803-1
DOIs
Publication statusPublished - Jun 2016

Keywords

  • Bayes methods
  • approximation theory
  • convex programming
  • image restoration
  • inverse problems
  • Bayesian confidence region approximation
  • Bayesian high-posterior-density region approximation
  • approximation error
  • convex inverse problems
  • high-dimensional image restoration problem
  • impressive point estimation
  • proximal Markov chain Monte Carlo
  • standard convex optimisation techniques
  • statistical signal processing methods
  • Approximation error
  • Estimation
  • Inverse problems
  • Optimization
  • Signal processing
  • Uncertainty
  • Bayesian inference
  • convex optimisation
  • uncertainty quantification

Cite this