TY - JOUR
T1 - Anisotropic diffusion in oriented environments can lead to singularity formation
AU - Hillen, Thomas
AU - Painter, Kevin J.
AU - Winkler, Michael
PY - 2013
Y1 - 2013
N2 - We consider an anisotropic diffusion equation of the form ut = ??(D(x)u) in two dimensions, which arises in various applications, including the modelling of wolf movement along seismic lines and the invasive spread of certain brain tumours along white matter neural fibre tracts. We consider a degenerate case, where the diffusion tensor D(x) has a zero-eigenvalue for certain values of x. Based on a regularisation procedure and various pointwise and integral a priori estimates, we establish the global existence of very weak solutions to the degenerate limit problem. Moreover, we show that in the large time limit these solutions approach profiles that exhibit a Dirac-type mass concentration phenomenon on the boundary of the region in which diffusion is degenerate, which is quite surprising for a linear diffusion equation. The results are illustrated by numerical examples.
AB - We consider an anisotropic diffusion equation of the form ut = ??(D(x)u) in two dimensions, which arises in various applications, including the modelling of wolf movement along seismic lines and the invasive spread of certain brain tumours along white matter neural fibre tracts. We consider a degenerate case, where the diffusion tensor D(x) has a zero-eigenvalue for certain values of x. Based on a regularisation procedure and various pointwise and integral a priori estimates, we establish the global existence of very weak solutions to the degenerate limit problem. Moreover, we show that in the large time limit these solutions approach profiles that exhibit a Dirac-type mass concentration phenomenon on the boundary of the region in which diffusion is degenerate, which is quite surprising for a linear diffusion equation. The results are illustrated by numerical examples.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84873956680&partnerID=MN8TOARS
U2 - 10.1017/S0956792512000447
DO - 10.1017/S0956792512000447
M3 - Article
SN - 0956-7925
SP - 1
EP - 43
JO - European Journal of Applied Mathematics
JF - European Journal of Applied Mathematics
ER -