Analytical models to estimate the structural behaviour of fused deposition modelling components

Steffany N. Cerda-Avila, Hugo I. Medellín-Castillo, Theodore Lim

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: The purpose of this study is to evaluate the capability and performance of analytical models to predict the structural mechanical behaviour of parts fabricated by fused deposition modelling (FDM).

Design/methodology/approach: A total of eight existing and newly proposed analytical models, tailored to satisfy the structural behaviour of FDM parts, are evaluated in terms of their capability to predict the ultimate tensile stress (UTS) and the elastic modulus (E) of parts made of polylactic acid (PLA) by the FDM process. This evaluation is made by comparing the structural properties predicted by these models with the experimental results obtained from tensile tests on FDM specimens fabricated with variable infill percentage, perimeter layers and build orientation.

Findings: Some analytical models are able to predict with high accuracy (prediction errors smaller than 5%) the structural behaviour of FDM and categories of similar additive manufactured parts. The most accurate model is Gibson’s and Ashby, followed by the efficiency model and the two new proposed exponential and variant Duckworth models.

Research limitations/implications: The study has been limited to uniaxial loading conditions along three different build orientations.

Practical implications: The structural properties of FDM parts can be predicted by analytical models based on the process parameters and material properties. Product engineers can use these models during the design for the additive manufacturing process.

Originality/value: Existing methods to estimate the structural properties of FDM parts are based on experimental tests; however, such methods are time-consuming and costly. In this work, the use of analytical models to predict the structural properties of FDM parts is proposed and evaluated.

Original languageEnglish
Pages (from-to)658-670
Number of pages13
JournalRapid Prototyping Journal
Volume27
Issue number4
Early online date29 Mar 2021
DOIs
Publication statusPublished - 2021

Keywords

  • Analytical models
  • Fused deposition modelling (FDM)
  • Material extrusion
  • Prediction performance
  • Structural properties

ASJC Scopus subject areas

  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Analytical models to estimate the structural behaviour of fused deposition modelling components'. Together they form a unique fingerprint.

Cite this