Abstract
Quantum random numbers generators (QRNGs) rely on quantum systems to produce sequences of random numbers with an overall lower level of predictability than classical algorithmic systems. Over the past two decades, phase randomizations of coherent sources from quantum spontaneous emission effects have gained a lot of interest due to their operational simplicity, cost-contained components, and ability to generate random numbers at high rates. However, many QRNGs require optimal calibration and alignment to ensure efficient and effective random-number generation. This work demonstrates a detailed analysis of a heterodyne measurement based QRNG, which implements phase randomization from two independent laser sources. The analysis also quantifies the effects of setup misalignments using the Kullback-Leibler divergence as a benchmark to assess the limiting conditions of secure random-number generation.
Original language | English |
---|---|
Article number | 052305 |
Journal | Physical Review A |
Volume | 99 |
Issue number | 5 |
DOIs | |
Publication status | Published - 6 May 2019 |
Fingerprint
Dive into the research topics of 'Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator'. Together they form a unique fingerprint.Datasets
-
Analysis of the effects of imperfections in an optical heterodyne quantum random number generator
Donaldson, R. J. (Creator), Zanforlin, U. (Creator), Collins, R. J. (Contributor) & Buller, G. S. (Contributor), Heriot-Watt University, 31 May 2019
DOI: 10.17861/4b390eba-eca3-4fc5-92cd-796679113413
Dataset
Profiles
-
Ross J. Donaldson
- School of Engineering & Physical Sciences - Assistant Professor
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Assistant Professor
Person: Academic (Research & Teaching)