Abstract
To date most sonars use narrow band pulses and often only the echo envelope is used for object detection and classification. This paper considers the advantages afforded by bio-inspired sonar for object identification and classification through the analysis and the understanding of the broadband echo structure. Using the biomimetic dolphin based sonar system in conjunction with bio-inspired pulses developed from observations of bottlenose dolphins performing object identification tasks, results are presented from experiments carried out in a wave tank and harbor. In these experiments responses of various targets to two different bio-inspired signals are measured and analyzed. The differences in response demonstrate the strong dependency between signal design and echo interpretation. In the simulations and empirical data, the resonance phenomena of these targets cause strong notches and peaks in the echo spectra. With precision in the localization of these peaks and dips of around 1 kHz, the locations are very stable for broadside insonification of the targets and they can be used as features for classification. This leads to the proposal of a broadband classifier which operates by extracting the notch positions in the target echo spectra. © 2010 Acoustical Society of America.
Original language | English |
---|---|
Pages (from-to) | 3809-3820 |
Number of pages | 12 |
Journal | Journal of the Acoustical Society of America |
Volume | 127 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 2010 |