An investigation into the engineering of the drapability of fabric

George K. Stylios, Norman J. Powell, Lu Cheng

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


The drape attributes of fabrics, number of folds, depth of folds and evenness of folds were measured together with the drape coefficient. The relationship between these measurements and the subjective evaluation of the fabric drape were modelled for each end use on a neural network using back propagation, which can correctly predict the grades of 90% of the samples. The relationship between the drape attributes and fabric bending, shear and weight was also modelled using neural networks. It was found that using the natural logarithm of the material property divided first by the weight of the fabric produced the most predictive model. Together, these models provide a powerful predictive tool to determine both the drape attributes and the drape grade from the mechanical properties of a fabric. The accuracy of the prediction of this system was found to be 83% overall. Combining this with a novel feedback system (Stylios and Cheng, in preparation), the drape grade or drape attributes of a fabric can be modified to fit customer requirements and then the changes to the material properties required to achieve them can be determined.

Original languageEnglish
Pages (from-to)33-50
Number of pages18
JournalTransactions of the Institute of Measurement and Control
Issue number1
Publication statusPublished - 2002


  • Aesthetic drape
  • Drape meter
  • Material properties


Dive into the research topics of 'An investigation into the engineering of the drapability of fabric'. Together they form a unique fingerprint.

Cite this