### Abstract

This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.

Original language | English |
---|---|

Publisher | Cambridge University Press |

Number of pages | 520 |

ISBN (Electronic) | 9781139898133 |

ISBN (Print) | 9780521728522 |

Publication status | Published - 2014 |

### Publication series

Name | Cambridge Texts in Applied Mathematics |
---|---|

Publisher | CUP |

## Fingerprint Dive into the research topics of 'An Introduction to Computational Stochastic PDEs'. Together they form a unique fingerprint.

## Cite this

Lord, G. J., Powell, C., & Shardlow, T. (2014).

*An Introduction to Computational Stochastic PDEs*. (Cambridge Texts in Applied Mathematics). Cambridge University Press. http://www.cambridge.org/gb/academic/subjects/mathematics/differential-and-integral-equations-dynamical-systems-and-co/introduction-computational-stochastic-pdes?format=PB