Abstract
We construct large families of new collapsing hyperkähler metrics on the K3 surface. The limit space is a flat Riemannian 3-orbifold T 3/Z 2. Away from finitely many exceptional points the collapse occurs with bounded curvature. There are at most 24 exceptional points where the curvature concentrates, which always contains the 8 fixed points of the involution on T 3. The geometry around these points is modelled by ALF gravitational instantons: of dihedral type (D k) for the fixed points of the involution on T 3 and of cyclic type (A k) otherwise. The collapsing metrics are constructed by deforming approximately hyperkähler metrics obtained by gluing ALF gravitational instantons to a background (incomplete) S 1–invariant hyperkähler metric arising from the Gibbons–Hawking ansatz over a punctured 3-torus. As an immediate application to submanifold geometry, we exhibit hyperkähler metrics on the K3 surface that admit a strictly stable minimal sphere which cannot be holomorphic with respect to any complex structure compatible with the metric.
Original language | English |
---|---|
Pages (from-to) | 79-120 |
Number of pages | 42 |
Journal | Journal of Differential Geometry |
Volume | 112 |
Issue number | 1 |
DOIs | |
Publication status | Published - 8 May 2019 |
ASJC Scopus subject areas
- Analysis
- Algebra and Number Theory
- Geometry and Topology