Abstract
Particle agglomeration, wall deposition and resuspension are inherent to many industries and natural processes, and often inter-connected. This work looks into their relation in a confined particle laden swirling flow. It investigates how the size of detergent powder spray dried in a swirl counter-current tower responds to changes in the air flow. Four sets of sprays are investigated under varying combinations of air temperature and velocity that cause the same evaporation. The use of high air velocities accumulates more of the droplets and dry powder in the chamber swirling faster, but it leads to creation of a finer product. Particle-particle and particle-wall contacts are made more frequent and energetic but in turn the swirl troughs the solids to the wall where deposits constantly form and break. Past PIV and tracer studies revealed that the rates of deposition and resuspension are balanced; the data discussed here indicate that the dynamic nature of the deposits is a major contributor to particle formation. In contrast with the usual assumption, the product size seems driven not by inter-particle contacts in airborne state but the ability of the solids to gain kinetic energy and break up a collection of clusters layering on the wall. As a result, the dryer performance becomes driven by the dynamic of deposition and resuspension. This paper studies the efficiency of limiting operation strategies and shows that a low temperature design concept is better suited to control fouling phenomena and improve capacity and energy consumption.
Original language | English |
---|---|
Pages (from-to) | 284-299 |
Number of pages | 16 |
Journal | Chemical Engineering Science |
Volume | 162 |
Early online date | 20 Dec 2016 |
DOIs | |
Publication status | Published - 27 Apr 2017 |
Keywords
- Agglomeration
- Deposition
- Fouling
- Removal
- Resuspension
- Spray dryer
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
- Industrial and Manufacturing Engineering
Fingerprint
Dive into the research topics of 'Agglomeration during spray drying: Airborne clusters or breakage at the walls?'. Together they form a unique fingerprint.Profiles
-
Victor Francia
- School of Engineering & Physical Sciences, Institute of Mechanical, Process & Energy Engineering - Assistant Professor
- School of Engineering & Physical Sciences - Assistant Professor
Person: Academic (Research & Teaching)