Aerodynamic drag in competitive tandem para-cycling: Road race versus time-trial positions

Paul Mannion*, Yasin Toparlar, Bert Blocken, Eoghan Clifford, Thomas Andrianne, Magdalena Hajdukiewicz

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

An athlete's riding posture is a key element for aerodynamic drag in cycling. Tandem cycling has the complication of having two athletes in close proximity to each other on a single tandem bicycle. The complex flow-field between the pilot and stoker in tandem cycling presents new challenges for aerodynamic optimisation. Aerodynamic drag acting on two tandem road race setups and two track time-trial setups were analysed with computational fluid dynamics (CFD) simulations. For validation purposes, wind tunnel measurements were designed providing drag measurements from both tandem athletes simultaneously using a quarter-scale model. A max drag force deviation of 4.9% was found between the wind tunnel experiments and CFD simulations of the quarter-scale geometry. Full-scale CFD simulations of upright, crouched, time-trial and frame-clench tandem setups were performed. The drag force experienced by individual athletes in all investigated tandem setups was compared to that of solo riders to enhance understanding of the aerodynamic interaction between both tandem athletes. The most aerodynamic tandem setup was found to be the frame-clench setup which is unique to tandem cycling and had a CDA of 0.286 m2, and could provide an advantage of 8.1 s over a standard time-trial setup for a 10 km time-trial event.

Original languageEnglish
Pages (from-to)92-101
Number of pages10
JournalJournal of Wind Engineering and Industrial Aerodynamics
Volume179
DOIs
Publication statusPublished - Aug 2018

Keywords

  • Aerodynamics
  • Computational fluid dynamics
  • Para-cycling
  • Paralympic
  • Tandem
  • Time-trial
  • Wind tunnel experiments

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Renewable Energy, Sustainability and the Environment
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Aerodynamic drag in competitive tandem para-cycling: Road race versus time-trial positions'. Together they form a unique fingerprint.

Cite this