Accurate computed spin-state energetics for Co(iii) complexes: implications for modelling homogeneous catalysis

Samuel E. Neale, Dimitrios A. Pantazis, Stuart A. Macgregor

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)
26 Downloads (Pure)

Abstract

Co(iii) complexes are increasingly prevalent in homogeneous catalysis. Catalytic cycles involve multiple intermediates, many of which will feature unsaturated metal centres. This raises the possibility of multi-state character along reaction pathways and so requires an accurate approach to calculating spin-state energetics. Here we report an assessment of the performance of DLPNO-CCSD(T) (domain-based local pair natural orbital approximation to coupled cluster theory) against experimental 1Co to 3Co spin splitting energies for a series of pseudo-octahedral Co(iii) complexes. The alternative NEVPT2 (strongly-contracted n-electron valence perturbation theory) and a range of density functionals are also assessed. DLPNO-CCSD(T) is identified as a highly promising method, with mean absolute deviations (MADs) as small as 1.3 kcal mol-1 when Kohn-Sham reference orbitals are used. DLPNO-CCSD(T) out-performs NEVPT2 for which a MAD of 3.5 kcal mol-1 can be achieved when a (10,12) active space is employed. Of the nine DFT methods investigated TPSS is the leading functional, with a MAD of 1.9 kcal mol-1. Our results show how DLPNO-CCSD(T) can provide accurate spin state energetics for Co(iii) species in particular and first row transition metal systems in general. DLPNO-CCSD(T) is therefore a promising method for applications in the burgeoning field of homogeneous catalysis based on Co(iii) species.

Original languageEnglish
Pages (from-to)6478-6487
Number of pages10
JournalDalton Transactions
Volume49
Issue number19
Early online date21 Apr 2020
DOIs
Publication statusPublished - 21 May 2020

ASJC Scopus subject areas

  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Accurate computed spin-state energetics for Co(iii) complexes: implications for modelling homogeneous catalysis'. Together they form a unique fingerprint.

Cite this