Abstract
In this paper we present a novel theory to analyze defocused images of a volume density by exploiting well-known results in Fourier analysis and the singular value decomposition. This analysis is fundamental in two respects: First, it gives a deep insight into the basic mechanisms of image formation of defocused images, and second, it shows how to incorporate additional a-priori knowledge about the geometry and photometry of the scene in restoration algorithms. For instance, we show that the case of a scene made of a single surface results in a simple constraint in the Fourier domain. We derive two basic types of algorithms for volumetric reconstruction: One based on a dense set of defocused images, and one based on a sparse set of defocused images. While the first one excels in simplicity, the second one is of more practical use. Both algorithms are tested on real and synthetic data. ©2008 IEEE.
Original language | English |
---|---|
Title of host publication | 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR |
DOIs | |
Publication status | Published - 2008 |
Event | IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2008 - Anchorage, AK, United States Duration: 23 Jun 2008 → 28 Jun 2008 |
Conference
Conference | IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2008 |
---|---|
Abbreviated title | CVPR 2008 |
Country/Territory | United States |
City | Anchorage, AK |
Period | 23/06/08 → 28/06/08 |